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LOGICAL METHOD OF CONTROL OF OPERATION OF 

ELECTRIC NETWORKS 

Introduction 
*■■■..■■■■ Ill II  ■■■ »■«■■H.MHIH , 

In the operation of complicated networks, even 

■when they are made up of »«liable   elements, the 

probability of appearance of faults becomes considerable. 

Therefore, in the operation of complicated networks, 

particular attention attaches to the problem of 

monitoring the operation of these devices, ^of methods 

of finding faults. However, by virtue of the com- 

plexity of networks, theprocess of finding faults 

requires a great loss of time and high skill on the part 

of the service personnel. These circumstances have led the 

authors to engage in the development ot a mathematical 

formalism, which permits, 
at a relatively small number of tests (ringing^ to determine 

the place and the. character of the fault. The basic 

results in this direction were obtained in 1951+ and were 

reported at the session of the Moscow Mathematical 

Society in 1955 /5A The constructed rules make it 

possible to automize the process of control of the 
K 

operation of the device* In the case of manual control, 

they also arts o£  considerable effectiveness, since because 



•of their algorithmic nature they can be performed by 

workers of low skill and within a short time. 

In the present article we expound in detail this 

problem. The general theory developed in this paper is 

based on the following premises. 

1) A network (A*   is specified, and when it is in 

working order   it realizes a certain function 

f(x,, x0, ..., x ), specified on the set E. 

2) There is a list of possible faults (which are 

not of random character) with an indication of the number 

of simultaneously possible faults; with this, to each 

possible combination of faults there corresponds a 

function defined on the set E. 

3) Methods of carrying out the control are 

described. 

Consequently, the results of this general theory 

are applicable only to networks for which a logical 

description has been developed. Therefore, for 

illustration we have used contact networks. This choice 

was dictated also by the fact that contact networks 

represent, from the point of view of reliable means, 

the most simple networks, .hence   the necessary step 

towards       studying the more complicated networks. 

In addition, a whole series of questions was 

considered exclusively for contact networks. 

* 



As applied' to contact networks, premises 1, 2, and 

3 are formulated as follows. ..\ 

1) Corresponding to contact network 0^ is a 

function f(x , x , ..., x ) of algebraic logic. 

2) Two kinds of faults are considered ~ the short 

circuiting of the contact and the opening of the contact; 

so far no limitations are imposed on the number of 

simultaneously possible faults. 

3) The network is monitored on the basis of its 

response to different various combinations of the states 

of the relays. 

Example.    The network shown in Fig. 1 realizes the 

function f(x , *2> = *! * x
2 * 1  (m°d 2)*    *** " ^ 

required to find^ault in the network, if it is known 

that one contact is  faulty.    It is easy to see that for 

this purpose it is enough to establish whether or not 

the network conducts under the following states of the 

relays 

'■x1=0t sa=0; ^=0, x2 = U *» = !,  a»=°i ^i — 1' x*—i' 

Namely? if when x Z  xg = 0 the circuit does not conduct, 

•then either contact 2 is open or contact h  is open«, if 

when x = x = 1 the circuit does not conduct, then 

either contact 1 is open or contact 3 is open; if when 

x    = 0 and x = 1 the circuit does conduct, then either 



contact 1 or contact k  is closed; if when x^ = 1 and 

rp s 0 and the circuit conducts, then either 2 or 

contact 3 is closed. 

The article consists of two chapters.  In Chap. I 

are considered general problems of control of networks, 

that is to say, without taking into account the structure 

of the network. A general procedure is given for the 

construction of tests. For illustration we give several 

examples from the field of contact networks. The 

measures developed for the construction of minimal tests 

can be used directly for the construction of minimal 

disjunctive (or conjunctive) normal forms /*6/. At the 

end of the chapter we establish a duality principle for 

tests and disclose certain properties of single tests as 

applied to contact networks. What remains unstudied are 

the    possibilities of control by means of conscious 

modification of the topology of the network; 

for example, short circuiting between any two vertices 

of the network, the removal of part of the network, the 

rearrangement of the blocks, etc. In Chap. II procedure 

is given for the construction of tests for individual 

classes of networks with account taken of the structure 

of the networks. The latter is due to the fact that the 

general algorithm, even for relatively simple contact 

networks (which realize functions of 6 or 8 variables) 



becomes too cumbersome. Therefore, as in the case of 

network synthesis, it was logical to narrow down the 

class of networks and thereby increase the effectiveness. 

The procedure of construction the tests is based here on 

a block construction of the network and on an inductive 

'specification of the functions. In this manner the 

construction of tests reduces to the construction of 

tests for individual blocks. In the latter case the 

consideration of the general theory are used. Nest to 

be studied are tentative and ordered texts. 

The results of Chap. I and Chap* II, Sec. 7 were 

derived by S. V, Yablonskiy, the remaining results were 

obtained by I. A. Chegis. The general writing of the 

text was performed by S. V. Yablonskiy. The work on 

the formulation and calculation of the examples was 

carried out by T. A. Alferova and L, N. Rybakova, to 

whom the authors express their gratitude. 

Chapter I 

General Theory of Constrüctlori_of_Tests 

'  l  Tables of Fault Functions^njJjeJh^dA_cJJIheir 

Construction 

Let a network & consist of I elements (for 

example, contacts). Let furthermore the element i have 

s faults. It is obvious that the number of different 
- 1 



faults in the network is equal to 

JJ(i-f-*«)-!. 

Let us renumber the faults of Interest to us. Then, for 

the j-th fault the network Öl   goes into the network #y 

We denote by f^, xg, ••., *n> the function corresponds 

ing to the work of the network M> .    The function 

f <*,*,...» x ) is called the fault function, 
lit*. 

Let M be the set of investigated faults. Then a 

table of functions, containing a table of functions 

f(t , r ,■ ..., 3t )*, and also the tables of all the 
X C~ XX"""" y. 

fault functions t&(xv  *2> •••» *n>> 
where a fe Vs 

called the table of fault functions. 

* We make the correct state of the network 

correspond to the index 0, and thereby definition,the 

function f^T-p *2, **«> *p) 
3 f(*i> V "*' *n}* 

There exist two methods of constructing tables 

of fault functions. 

The first method consists of constructing the 

table by rows. For this purpose one scans all the 

assemblies of the values of the arguments. 

For each value of the argument one seeks the correspond- 

ing value of the function f, and one marks.on the 



diagram the contacts, either -with a solid line or with a 

dotted line, depending on whether the contact closes or 

opens at the particular assembly. Then, for f = 0, one 

picks out those faults mich short the network,*and in 

the according columns of the rov under consideration one 

places a -l«l At f s 1, one picks out those faults, uhich 

open the circuit, and on the corresponding columns of the 

row under consideration one places a «cK Then after 

scanning all the assemblies one obtains -a table of fault 

functions« In each column of the table, corresponding 

to a given fault, one obtains arable of the functions 

of this fault, and . into the empty boxes 

one should transfer mentally the corresponding values of 

the function f • 

Example. Let us consider the sequence of compil- 

ing a table of fault functions in accordance v*ith the 

indicated first method, for the network shown in Fig. 2, 

vihich realizes the function «^i/*» y' Z> w)' ^  tlW 

assmied faults are the closing'or opening of ä single 

contact. For convenience, «e number the contacts of 

the network (see Fig. 2) from 1 to lh. distribution 

of the faults is shovm in Table 1. 

7 — 
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In this table, the first column (v,_y, z, w) 

contains all possible assemblies, whereas the succeeding 

columns are headed with the numbers 0, 1, 2S • ••, 1+ 

and IS 2«, ..., W,  Where the number 0 corresponds to 

the correct state of this network, and each of the 

numbers 1, 2, ..., I5* corresponds to .a* closing of the 

contact denoted by the same number- on Fig, 2, and to each 

of the numbers 1', 2', ..., lM corresponds an opening 

of the same contact» 

Figs* 3 and h  show sketches of each assembly 

indicated in Table 1; the asterisks mark the contacts, 

the closing (Fig. 3) or opening (Fig. V) each of which 

brings the circuit to a closed or to an open state. Over 

each network is written out the corresponding 

assembly, and under each network the numbers of these 

faults are individually written. 

' To explain the manner with which the construction 

of Table 1 is carried out and with which the indicated 

diagrams of Figs. 3 and h  are drawn, let us consider 

the assembly (0, 0, 0$ 0), S-^^CO, 05 0, 0) r, 0, 

Corresponding to it is the correct state of the 

system indicated in the upper left corner of Fig. 3. 

Comparing this circuit with the row of Table 1 

corresponding to the assembly (0, 0} 0, 0) and with 



1 
'Fig. 2, we sec that in the table one places a rtlnin the 

columns with numbers corresponding to the numbersof the 

contacts marked with asterisks (i.e., in columns 1, £, 

7, 9, and 12). 

I     In the second method the table is constructed by 

columns. For this purpose one introduces a fault in the 

. network, i.e., certain contacts are short circuited and 

others are discarded. After such an operation, a network 

with the particular fault under consideration is obtained. 

This network corresponds to the fault function of interest 

to us. However, sometimes there is no need for compiling 

again a function of this fault. In fact, assume that a 

certain contact has opened. Let us consider all the 

circuits which pass through this contact. We write out 

all the assemblies corresponding to these circuits. 

Obviously, the fault function (corresponding to the 

opening of the contact under consideration) can differ 

from the original function f(xlt x2, ..., x ) only at 

the written out assemblies, or more accurately, the 

difference takes place, if the written assemblies are 

not encountered in any circuit that does not pass through 

the given contact, and to the contrary, the difference 

in a certain assembly does not take place if this 

assembly is encountered at least in one such circuit. 

L J 
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- 1 
Assume that the fault consists of a shorteü contact o 

Let us consider all the circuits which have passed through 

this contact, eliminating those in which a contact 

identical with that considered is involved« Again we 

write out all the assemblies corresponding to these 

circuits. In the assemblies we change the values corre- 

sponding to the given contact to the opposite ones. The 

fault function either does not differ from the original 

function at the constructed assemblies, or differs from 

it, depending on whether or not these assemblies are 

encountered in the circuits that do not pass through the 

given contact. However, the difference in the fault 

function from f(x,, x_, ..., x ) can take place also at 
1 <L n 

other assemblies, \4hieh correspond to the so called 

"false circuit*/ i.e., circuits different from those 

considered above. An example of a network with a false 

circuit is shown, in Figo 5» 

Example. Let us consider the order   of com- 

piling a table of fault functions in accordance with 

the second method for the preceding circuit (see 

Fig. 2). 

Shorts. Fig. 6 shows the circuits that are 

produced from the initial one (see Fig. 2) from closing 

of any given single contact. On the diagrams of Fig. 6 

I these contacts are denoted by the number 1, which 

— 13 — 
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'designates an identical admittance. 

Analyzing Fig. 6, we obtain functions that 

describe the corresponding admittances of the networks 

(i.e., the fault functions for a given network)i 

i 
/, =r ,V, 3 < (x, y, z, w) V «/s V *yw V ^w V ^tf. 

A—sYr„4^ !/• *' "OV^-^V-W-wV *£*'*. 

/^.V, 34(.r, .v, JE, u^V-^V-W 

/4 =r 5lt3>4 (x, y, 2, u?) V *//^ V *7/- V ■*#"». 

/5=5lfS>4(T, y, 3, «-) V ^y-w V -n/^ V *y™ V •*#**% 

;B = 51>ai4(r, y, 2, u>)\/xy5u<\/'fy2to, 

L — S^^J, ?/, s, w)\/ryzwV xyiwV xy£0), 

f^Sl:i.(x, //, z, iv)\/xyzü>\/xyza>\/xyzw% 

U ~ si.-i.i (*• v. z." «0 V -'^ V *y-f V *»-#. 
A« = ^1.3.4 (x' V. z> u>)\/ryzir\/x?izii>\J?yzir, 

i — s,, 4 (a:,* v, s, w) V j-y^ V *y~w V -^SMJ' 

/12=51>3i4(x, ?/, 2, w)\/Tyzff\/xyi*>\/*yw, 

/^^^(x, y, 2, u;)\/.T7/r:. 

Here the numbers of the function f correspond to 

the numbers of the networks on Fig. 6o 

Open circuits ', Analogously, on Fig. 7 

we show the networks that are derived from the initial 

t.one upon opening of any single contact, and the contact 
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in which the discontinuity takes place is    denoted by 

zeros on these diagrams* 

For each network shown in Fig. 7, we write out a 

function that describes the admittance of this network 

(i.e., the fault function for the given network): 

)Y •- xyzw V £}ß® V *yiw V ^2J0' 

/., -,, rgzw V /yew V *>J™> V XtJtw V ^"^ V 4^\ 

/'[. - -.- .n,z v ///^ y -^w y ■*/p«> v A!/-"' v xyar> 

/,  ■:•■:■■ xifz\/ xtnr\/' xyiu'\/ rif:rv\/ xy:.w\/ xytir-, 

::: ,7/; y .r//w V .»-f/^r y xyzw V ^*»? V J\V-«' V JP^ ■ 

/K, — wz V -r//cr y .n/=?r V -»17'""' V ^Jt? V ^'r V J^' 

/p. ~- />/; y -x-fiv y .rj/sir y .*v/sN' y ^/-y-» 

/in. ~ ^ v -^u? V *y *ff' V £y*ü' V -I,P«"> 
/~ ™ .rys y a-yzw? V ^-tf* V *.'/*"' V ^f V *££«; V *£2??' 
/ '. — xwr V .rö2U' V xyiiT \f xyzw V xyzw V J#2u? V ffjjstf'. 

Here, too, the number of the function f corre- 

sponds to the number of the network on Fig. 7. 

The advantages of any particular method depend on 

the specific case; on the networkK on the character and 

number of faults. For the purposes of control, it is 

convenient to construct the table in both manners. 

17 
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In the compilation of the table it may be founä that 

certain columns coincide identically. Thus, in the 

example under consideration here we have f„ = f^? 

f - f     . and f  s f , • The coincidence denotes that i8 - -10> *»  13   lh 

the corresponding faults are electrically indistinguish- 

able or, if one of the columns is empty (always correspnds 

to the correct state) that the network contains 

ercesrive contacts. In the latter case, by 

removing these contacts we obtain a net-work equivalent 

to the initial one. 

We note that the fact that certain fault functions 

coincide can be predicted directly from the network. In 

fact, if the permissible fault is a break in the contact, 

then, if two contacts are connected in series, it is 

impossible to establish which of these is broken. 

Analogously, it is impossible to establish the shorting 

of a contact in the case of a parallel connection. It 

is Interesting to ascertain a criterion that would 

permit finding the faults which are indistinguishable 

from the analysis of the network. 

Thus, all the faults in the correct state are all 

broken up into classes such that the representatives of 

one class have identical columns, and the representatives 

of different classes have different columns. We shall 

henceforth deal with constructed classes, denoting them 

11 



by,nurabers of certain of their, representatives 

2. Tests and Their Construction 

Let 39*2 be a set of functions £(x., x2? ..., x^), 

specified on and and the same set K and assuming values 

from the set G- (here n is the same for all the functions). 

We assume furthermore that all the functions from the 
mri . 

set  are pairviise different. Let furthermore there be 

fixed a certain    subset Ti A
J(not ordered) pairs of 

functions of the set 18fc  , where the pairs (f, f) are 

excluded* 

Definition. A set T C E is called a test 

(relative toE,3^, ^ ) if, no matter what pair of 

functions (f, g) t Ifl      > f^» ^9» •«'5 \^ 

"^    g<X > *0? *»M 
X ^ 0n the Set T* 

J»       £!■■ *■*■ 

It is obvious that the concept of a test depends 

on the set # , From the definition it follows that E 

is a test (trivial test). 

Let us proceed now to describe the construction 

of tests. Let T s { ej, e^? ..., e^ ]    be a certain 

test. ^t-taMVV«  ' *»•**'"«*. 
then there exists an assembly e'£ S(l 4 s ^ t) s 
such that f (e!) ^ f (e55. This assembly, consequent- 

i s     os 
ly enters into the set B  — the set of all the 

assemblies on which the functions t±  and f^ are different«, 

— If — 



From this we have the following: T is the result 

of the selection from all the sets E  where (f±i  f^)£lfL 

Attention should be called here to the fact that 

owing to the use of the "selection principle" (true, In 

a case of a finite set) In the formation of T, we obtain 

a cumbersome apparatus for the construction of tests. 

To describe and construct tests it is convenient 

to use the apparatus of algebraic logic. In fact, let 

us write the set EJ 4 in the form of the formula 
■»•3 

v, & h («,) ¥ /; Ci) V H & A <«*> * f-! W V • • - V *- &/.' (O ^ *J M = 

Vie make up the expression 

II   (c\J v <f v • • • v «#), 

where under the sign TT we understand the abbreviated 

notation for the expression 
(     )&(     )&.-.&(     )• 

The expression obtained is of the form T£. . Applying 

the distributive law, and also the law of action with 

symbols e*'1 as with the variables of algebraic logic, 

i.e., by putting , \ / A * P— P 

we reduce the expression to the form 1 1! , where the s 

Ldoes not contain excessive terms. We can now formulate 

urn 
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the following proposition. 

Theorem« The elements that enter into one tersu of 

^Tt generate a set which is an elementary test,-- 

* A test T is called elementary, if any subset 

T' d   T is not a test. 

The theorem follows from the fact that the term 

contains elements from each bracket (e  V ep V 

Note« We see that the question of finding tests 

reduces to the construction, of a set, vhich has in common 

with each subset in the expression of the form 7T<£ at 

least one element. Therefore the sets that have these 

properties with respect to the expression of the form 

will be called, a test for the expression T^L 

We note that the transformation of Til to ^TT is 

cumbersome. This cumbersomeness irefiects   a more 

general set-theoretical fact,which states that under 

this kind of transformations it becomes frequently 

necessary to increase the cardinality (as in an 

A. operation). The method, of transformation will be 

investigated in greater detail in the next section. 

We shall indicate only one application of elementary 

tests here. 

*/ 



Definitions. The cardinality of the set T, which 

is a test, is called the length of the test. A test which 

has a minimal cardinality is called minimal. 

It is obvious that all the minimal tests '(of which 

there can be several) are found among the elementary tests. 

We shall henceforth be interested in minimal tests or in 

tests whose lengths are close to minimal. 

Let W- be a set of fault functions. One can 

imagine that they are all reduced to a single table^ as 

was already done (see Sec. 1). Let Ji    be a non-empty set 

of different unordered pairs of functions from jft. . In 

our case 'Jl   will contain most frequently all such 

possible pairs. In the latter case the test is such a 

set, on which all the functions from Vfl   are pairwise 

distinguishable. In other words, in order to detect 

a fault, it is enough to verify the network only for those 

sets, which are contained in the test. In the case when 

T 4:  E, this verification is shorter than the verifica- 

tion with using all the assemblies. In addition, when 

T V" E there is no need of writing out the entire table 

of fault functions — it is enough to know only that 

portion of the table,    corresponding to the set T, 

By virtue of the foregoing, particular significance 

attaches to the problem of constructing minimal tests. 

JL£ 



Note. The shorter the length of the test, the 

shorter the verification time of the network. However, 

this time can he reduced even further, by taking into 

account probability considerations. That is to say, 

once the network has been regulated, then the network is 

S correct with the greatest probability; different faults 

are encountered with different probabilities. Taking 

furthermore Into consideration that to detect a specific 

fault there is as a rule no need for »running through» 

the entire test (it is enough for this purpose to employ 

part of the assemblies), one can arrange the assemblies 

contained.in the test in such an order that the 

mathematical expectation of the length of that portion 

of the test,wMch is necessary prior to disclosure of • 

the fault, will be minimal. 

In conclusion, we shall give examples of con- 

struction of minimal tests. The examples pertain to the 

network analyzed in Sec. 1. In example 1, the per- __ 

missible faults are the closing of one contact, in example 

2 are that of opening one contact. The assemblies e 

of the set E are denoted by integers, the binary 

arrangement of which, written from left to right, is 

identically equal to e. 

The notation O-IJO V 3 V 5 V 6 denotes that 

the 0-th function differs from the 1-st function (see 

- n — 



table)-**;64eO, 3,  5} and  6 assemblies 

Example 1. 

Let us virite out all the expression 

ij 

s of the form 

0 • I 0 V 3 V 5 V 6 
0-2 9VWV12 1. 2 0V3V5V6V9VW12 2< 3 12 
0-3 9V10 1 • 3 o v 3 v 5 y 6 y 9 y io 2- 4 5 V 6 V 9 V 10 
0 • 4 r>y6yi2 1 4 0V3y 12 2- 5 0V3V12 
0 - J) 0V3VÖV10 1. 5 5V6V9VW 2- 6 5V6V9yi()V12 
0 • 6 5V6 i 6 oys 7 oysy icy 12 
0 • V 0 V & V 9 1 7 3 V 6 V 9 2 8 3V/6V9V 12 
0 • 8 3 V 6 V 10 1 8 0 V 5 V 10 2 11 3V5V toy 12 
0 • 11   3 V 5 V 9 1. 11 0 V 6 V 9 2 12 0 V 6 V 9 y 12 
0. 12  0 V 6 V 10 1 12 3 V 5 V 10 2 13 ay io 
()• 131 12 1 13 0 y 3 V 5 V 6 V 12 

5-4 5 V 6 V 9 V H» V 12 4 • 5 0V3V5V6V9V10V12 5 •6 0V3V5V6y9V10 

35 ÖV3 4 6 12 5 7 3 V 5 V 10 

3 -. -6 .5-.y-6-.V-9V.io 4 7 oyev9y 12 5 •8 0 y 6 V 9 

3 • 7 0 V 5 V 10 4 8. 3y 5yioy a 5 • 11 o y 5 v 10 
3-8 3 y r, v 9 4 11 3V6V9V12 5 12 3 V 6 V 9 
3 • 11 3 y r> v to 4 12 0 v -c> v to V 12 5- 13 oy3\/9yioyi2 
3 • 12 o y «3 V 9 4 13 5 V 6 
3 • 13 9y to y 12 

6-7   i 0 V <> V 9 7 • 8 0 V 3 V •"> V 6 V 9 V 10 8- 11 5 V 6 V 9 V 10 

6 ■ 8   |3V.r»V t0 r? 
i 11 oy3 ■ 8- 12 0V3 

<). 11; 3 v «> v 9 7 12 syoyoyio 8- 13 3yey ioy 12 

« • 52 oy 5 v io 7 • 13 0\/5V9V12 
Ü • 13 r»yfiyi2 . 

11.12ioy3v5V6V9vio !2-i3!oyGyioyi2 
U.l3|3V«r'V9V J2 

The expression TT^. 

becomes 

after obvious simplifications, 

IIS = (9V10)(5V6)(0V5V9)(3V6Vi0)(3V5\/9)(0V6V«>)"*2. 
.(0V3)(3V6V9)-(0V5V*0)(0\/6V0)(3V5Vt0) = 

= (0V3)(5V6)(9V10)-J2.l(0V5VÖ)(3V5V9)l- 
• [(0 V 5 V 10) (3 V 5 V 10)1 • 1(3 V 6 V 10) (0 V 6 V 10)1 • 
.l(3V6V9)(0V6V»)l=(0V3)(5V6)(8V10).12. 
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.t(0.3\/^\/Ö)(0-^Vr)\/10)}-l(0.3V6V9)(0-3V6\/10)] = 
=r(OV«i)(«r>\/6)(9V10)-12-[(0.3VSV9-10)(0.3V«\/9-10)l = (OV3)- 

• (5 V 6) (9 V10) • 12 • (0 • 3 V 5 • 6 V 9. 10) 

By opening up the brackets we obtain 

ill - (). 3 • 5 . 9 • 12 V 0 ■ 3 • 5 - 10 • 12 V 0 • 3 • G ■ 10 • 12 \J 0 • 3 • (> • 9 - 12 V 
V 0 • 5 .6-9. 12 V 0 • 5 • 0 • 10 • 12 V 3 • 5 • G • 9 . 12 V •* • •> • « • *()' 12 V 
V 0 .5.9.10.12V 0 • 6 • 9 • 10 • 12 V 3 • 5 • 9 • 10 • 12 \/ 3 ■ G • 9 ■ JO • 12. 

Each term defines a minimal test» 

Eyample 2» 

Let us write out again all the expression of the 

form 

tfV-.-Vtf 
Ü ■ r , s v n \ ' 13 V i'*V ir.     !'• 2' 1 V 2 V 4 V 7V8VIIV13VU V15 
Ü • 2'   ■ 1  ■.•' 2 Y w~ r- 3" s V i 5 
0 • 3'   ; 53 V !'< \" • 5 !'• ■{' 13 V i 4. V 15 
u . v   W 5! r-5' 4 V7\/8\/n V13 V 14 \/ 15 
o ■ r/  ■: 4 v 7 I' • 6' I V2 VS\/11 V13V 14 V «5 
a -6'  M V 2 r. 7' 7 VS V t3V14 V*5 
0 . r. j 7 \/ i i 1'- 8' ■V\/l! VI 3v 14 VM5 

r-9' 2V«VH V 13 V 14 V15 
(1 -9''   i 2 r- to' 1 V$V UV 13 V 14V 15 
0 • 1U' i i r- ir 2V4VH. V 13 V 14 V 15 
(i • Si' J2V/J \ ; 8 1'- 12' 1 V" V«\/13V'14 V 15 
0- i:r| 1 V7 \ 11 r- is1 

SV 11 V'14 V 15 
<' - 13' | 13 r- 14' 8 V 11 V 13 V 15 
0 - 14' U4 
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ti 
2'. a'   MV2V'*V'Vl3V14Viii 

■r    -    in; 'S 

2;' - 6' | 4 V ~i 
2'- ?;    1 V2V5V1I 
2'-8" ji V2V7V« 
2'-*r ji V4V7 

iff 12 V 4 V ? 
7V* 

1V2 \/4\/7Vi'> 
! V2V4 V 7 VM 

5 V 2 V < V " 
4 V ? i 
7 V « 
*> * / '■ \ ' *? i y 's y  / 

* * 
* 8* 
* '<y 

* iO' | 1 7 4 V ? 
- 11' i 2 V 7 V 8 
- U>" j 1 VWH 
* i3'J4 V7V13 

5'- 14*  4 14 

*'• l(ir   1 V 4 78 
*'. 11'  2 
r- la* <v*v?V8Vii 
8'- 13'J4V« V13 
h*. I4'J4V«V1* 

lir. J2'| 1 \<2\/4 V7V^Vil 
ir. !3']2\/4 \/fi V13 
it". 14'   2V4 VSV14 

.T» 
3'. 
3'- 
3 - 
3;. 
3'- 
3'- 
8*. 
3'- 
3'« 

8' 
9' 
10' 
11' 
12' 
18' 

'• 1-V 

6'- 
6'. 
C- 
6'- 

8* 
9' 
10' 
11' 

6'- 12' 
6'- 13' 
6'- 54' 

« V H V J3 V 14715 
4 V7V3-V *-W J!> 
1 V2V^'V SW^' 
7 V HV i3V u V^ 
4V8V13V1W15 

■j\r,V"V»3V«V»«r' 
14 V 15 

i i3 v«'» 

' I V 2 V 7 V {j 

■1 V 2 V 4 V ^ 
1 
■? 

1VW 
2 V 7 V 1 5 
:l V2V 13 

0'. 10' 
9' 11' 
9'. 12' 
9'- 13' 
9'. 14' 

12'- IS' 
12'- 14' 

1 V 2 

i V 2 V 7 
2 V 13 
2 714 

11 

17 7711713 
177711714 

•v - ;r vv"rA\'j 
4'- <>'' iv:!'/f:i.'1 
4' T 7 '■/ 8 
4' K 4 V i i 
4' 9' 2 7 «711 
4' 10' i V 8 7 11 
4' . ii' 2 7 4 7 H 
4' • 12' i 7 7 V * 
4' • 13' 8751713 
4' ■ 14' FV'II 7 14 

10' 

JI' 
12' 
13' 
14' 

10'. tl' 
10'• 12' 
10'- 13' 
10- 14 

A 7 7 7 8 7 j 1 
2V7VÜ 
1 7 7 7^1 
274777*71! 
1 
7 7 11 7 i:- 
7 711 714- 

17274' 
77» 
1 V ^ 
1714 

13'. 14' j 13 7 14 

\b  — 



After obvious simplifications, we can write for ITU 

the following: 

nS~i.2.iS>H\('i\/\i)(7\/l\)(&\/il)]l{4\/8)(7VH)\(/lV'l)" 
= 1 ■ 2-13 • 14 (11 V 4 • 7 . 8) (8 V 4 • 7) (4 \/ 7 )*: 

Transforming this expression, we obtain 

£n=1.2.4.8. If. 13."14 V 1-2-4. 7-8. 13.14V1-2-7-8-11. i3-14V 
Vi-2-4.7.11.13.14. 

Each term will define a minimal test, 

3« Certain Bules for the Construction of Tests 

We have already seen that the construction of tests 

reduces to the construction of an expression of the type 

^TT. In the general case, to construct a ^ Tf it is 

necessary   first to obtain the expression 7T£ and then 

convert it to the form JLIT . Both these stages are 

exceedingly laborious. By virtue of these circumstances, 

it becomes practically impossible to construct minimal 

tests for arbitrary networks, using an algorithm that 

does not take into account the peculiarities of the 

structure of the networks, which realize functions of 

six or more variables* 

It must be noted that a direct expanding of the 

brackets even in a whole series of relatively simple 

problems leads to a very large number of terms; thus, 

Xn  the opening of the brackets in example 1 
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of Sec. 2, one obtains more than a million of terms. 

However, the final result contains, as a rule, much 

fewer terms.  In this connection, the question arises 
$ (.in er« es 

of finding simpler       , when it is possible:!) to 

construct a'fi starting with a table;  2) to con- 

' vert the 7T£ into £7T , bypassing the direct opening 

of the brackets with a consequent "reduction of 

similars," and 3) in the case of construction of a 

minimal test or any one fully definite test for the 

elimination of the transformation of 7!£ into 1 u 

In the present section we shall formulate 

briefly these rules. 

1. Rules of Construction of 7Tf. . 1. In the 

table of fault functions we discard the rows that 

consist either entirely of O's or entirely of l's, and 

also the corresponding assemblies. 

2. In the case when the table contains 

identical rows, we discard all of them together with 

the corresponding assemblies, leaving one representative 

of each. 

We shall disregard from now on the 

discarded assemblies, assuming that the functions are 

not defined on them. 

3. Vie choose all the assemblies that have that 

property, that for each of these there are at least . 
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two functions which assume on these assemblies different 

values, anä on the remaining.(which remain after 1^ and 

I„5 identical values. The resultant assemblies exhaust 
id 

all the one-term factors in the T$_    expression. 

l+. Let e. , e, , ..., e, be one-term assemblies, 
ix  x2       s 

obtained according to item 3. We remove from the set 

all the pairs of functions (f^ t  )  for which there 

erists an assembly e, (1 &    k £ s) such that 

f (€ ) # f (e, )e The resultant set will be denoted 
i ifc    3 *k 

by ril  . It is obvious that the construction of a test 

in a case when a set of pairs Tl*  is fixed is simpler 

than for the set of pairs   ^l  c- *!'', Let us assume 

that Ti' corresponds to the set 41*.    Then, obviously, 

■we have TP£ s ei-tei2***eis  "^ ' 
In practice it is more convenient to proceed as 

follows? using the sets ej_ , e^, ••., eig one breaks 

up the setlffl  into classes in such a way, that the 

representatives of different classes on a certain 

assembly e± (1 £ k ^ s) assume different values, 

and the representative of one class on    each of the 

considered assemblies assume one and the same value, 

Next, for each pair of functions (f^ fj) t ti     and 

such that the functions f±  and f^ enter Into one 

class» consequently, <f±, f^) t   IfV }    one constructs 

the set Ei^, etc. 
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5. Using the rule that A(A V B) = A, we cross 

out in the "ff£. expression the excessive factors. It 

should be noted here that when Item U is satisfied, 

the factors which are absorbed by the terms ei , c^, 

, e.  are automatically discarded, 
i 
II. Rules of Transformation of 7T-£_ into ^TT, 

1. Algebraic Method. Using the distributive law, we 

carry out the multiplication of the brackets 

{A\/Ii)C — AC\/BC. 

This is followed by further transformations, in which 

the identities 
A.A=A, AB=BA, A\/B=BVA, A\/AB=A. 

are taken into account. It becomes frequently convenient 

here first to group the factors in a suitable manner. 

2. The geometric method is based on the relation 

ITS £■</=£" f.7' 

In other words, the result of the operation TT£ is  H^ 

complement to the result of the operation £~ff on 

the complement. Thus, it becomes possible to obtain 

the expression of interest to us by using the supplement- 

ary operation to the operation U ^ A/. For this 

purpose, we consider a "sieve," which has the following 

form: in a rectangle parallel to the base one draws a 

total of m straight lines, where m equals 
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the number of different assemblies'©-, e , «,.., e of the 

function f(x,, xoJ ..., x ); let us assume that these 

are numbered as shown in Fig. 8. Next, we separate the 

segment 1 into two equal parts, segment 2 into four parts, 

etc.; finally we divide segment m into 2 equal parts. 

From segment 1 we remove the first half, we remove the 

1-st and 3-rd quarter of segment 2, we remove the 1-st, 

3-rd, 5-th, and 7-th eighths from segment 3, etc. The 

discarded part of the i-th segment of the sieve is set 

in correspondence with the assembly e.. and the undis- 

carded part is set in correspondence with the assembly 

1(1 < i ^ m). To each product Ue±.  we set in 

correspondence a part of the sieve; for this purpose, 

all the factors from the product 7T Cy are mentally 

projected on the segment in which is located the factor 

of the highest rank in the given product, and we take 

their intersection. The resultant part of the sieve 

will be called sparated. By carrying out such an 

operation with each term of &^e±A  ^e separate from the 

sieve a certain set of segments. Let us divide the 

base of the triangle int 2m parts. To each part of the 

subdivision, which is not contained in the projection 

on the base of the separated part of the sieve, we 

assign an index defined as follows: from an internal 

point of the given part we draw a perpendicular and take 

3/ 



the difference between m and the number of points of 

intersection of the perpendicular with the sieve, or, 

what is the same, we count the number of horizontal lines 

on which the perpendicular does not intersect with the 

sieve. (See reference /2/ .) 

It is easy to see that each part of the breakdown 

of the base, in which an index is defined, corresponds to 

an elementary test consisting of assemblies corresponding 

to all those segments, with which the perpendicular drawn 

from the internal point of the considered part does not 

intersect. It is furthermore evident  that the length 

of the elementary test, corresponding^ the given part 

of the breakdown is equal to its index. 

III. Rules of Construction of a Minimal Test. In 

the construction of a minimal test it is necessary to 

choose a certain term from the £1T , and therefore, in 

many cases, there is no need for carrying out a complete 

transformation from Ti to Iff. This is aided by the 

following two rules. 

1. If the product Ti. breaks up into groups 

such that the different groups do not have identical 

assemblies, then in order to obtain a minimal test it 

is sufficient to construct a minimal test for each group 

and to take their joining. 

In the case when the permissible faults are either 
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the closing of one contact or the opening of one contact 

it is obvious that the minimal test breaks down into two 

nonintersecting tests*, the first is minimal for closing 

in one contact and the other is minimal for opening in 

contact. In other words, in this case the f£  always one e< 
I 
'breaks down at-least into two groups without common 

assembly* This follows from the fact that in the case 

under consideration the fault functions corresponding 

to closing do not differ from the initial function on 

those assemblies in Which f(e) s l.and correspondingly 

the fault functions corresponding to open    do not 

differ from the initial function on those assemblies 

•where f(e) = 0* 

2. Let the expression Tl have the form 

{et V ej) (A V cfijBx) {A% \J e&BJ ... (A, \J e&B,) C, 

.mere V V W •••» AT < Br do  n0t contaln the 

assemblies e±  and e^, and the term G (which has the form 

T^. ) does not contain the assembly e±  (there may not 

be any brackets in A and B). It is obvious that in 

the minimal test, owing to the factor ^V^), there 

should be contained either e±  or e^ here it is more 

convenient to take first e , since both e±  and e^ enter 

symmetrically in all the factors, with the exception of 

C, while e. may also enter in C. 
5      3 
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To prove this we note that if the oppression $ «L^ 

is obtained from the expression "tf£, by crossing out a 

certain number of conjunctive terms, then to each test 

I of tha expression tl 1, there corresponds a test T2 

of the expression 1T£2, «ith 1'2 C ^ (^ such a 

crossing-out, the length of the test can only decrease). 

Let us consider two cases: 

a) the element ^ is chosen; when e.i is crossed 

out, "T^L becomes 

Hi:,:-- (A, V ejBx) (A* V ejH*) • • • (-^ V7 0*0 r: 

b) the element e, is chosen; vhen e is crossed 

out, TTtL becomes 

III, =. (.4, V eßj (A., V eJh) • • • (-'W «"AK'' 

If we now replace ej_ by e^, then the expression 

Tf.^  will be the result of crossing out of a certain 
2 

number of conjunctive elements from the expression 

and therefore in case b) the test can only be less. 

3. Let T£ be broken up into groups of factors, 

with eiV  ei2, ..., eit being the minimal test of the 

first group, and e? being the minimal test of the 

second group; then a) if e^, e±2,   ...» eit 
is the 

test for the second group, then eil? ei2, ...? eit is 

a minimal test for the entire product; b) if any 

minimal test of the first group is not a test for the 

second group, then e°, e^, ..., eit Is a minimal test 
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* 

7 

m «MUtttfit 

] 
. 

? 

J 

*jKWr        «W*WW          *fl««W         ■MSB»        «W*WI>        «fUEHB--          **»« 

) 

pig. 3 

>-"l 
/? 

Fig.   9 

3£~ 



for the entire product. 

The given rules do not exhaust other possible 

measures that facilitate the compilation of the test. 

To the contrary, searches for effective rules make up 

one of the Important problems in test theory. 

Certain other measures, which permit a simpler 

construction of the test, are described in the following 

chapter. 

Example. In conclusion let us give an example 

of the construction of a minimal test by the two methods, 

in the case when the permissible faults are the opening^ 

or the closing </• a single contact. Taking into account 

rule HI-p it is enough to construct tests for the case 

of closing and opening separately. The first method 

illustrates the rules 1^, 1^, I-, 113^, H^, and III^, 

whereas the second explains the geometric method of 

constructing tests. 

Let us consider the network shown in Fig. 9» 

which realizes the function 

Figs. 10 and 11 show the states of the networks 

for different values of the assemblies; the asterisks 

mark those contacts, the faults of which (closing in 

Fig. 10 and opening in Fig. 11) convert the network 

to the opposite position (in the sense of admittance). 
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The states of the networks for different values of 

the assemblies, shown in Figs. 10 and 11, can be gathered 

in a single table of fault functions (Table 2) 
Taole 2 

1 
! 
| 
i 

i 

0   1 
1 

i 
0 S u 
.to   t  u 

\ 
7 8 9 

101 n| 
i 

] 
12 1 

1 
r 

i  i  i . 
2' 8' 4'j 5' 

1 
6*| 7' 

i 
8'| 9'l 

!    i 

j 
10' j 

1 
H' il-' 

1      i 
(o, o, o, i) (oil 1 ii 11 11 i!i 1 

! 
I 

i | 1 
i 

t 
j 

(0. f!, i. (0 
1     ! 

°l    I1 M 1 h 
i i ii 1 !! | I    i        1 

1 
i 
l 

(U, 3, 0, U) 0 1 
1 

1 i 
1         ! 

ll 1 IININli   ! t       ! 
i       ; 
l           : 
i           i 

_1. 
t (0, 1, 0, 1) »1 ! | 1   Ii 

!   I1 
i   i 
1       ! 
i    i 

i j    i 

!   1 
'Ml      ; 

Mi!     i 
I 

{0, 1, 1. 1) 0 3! 1 i j   1 MM  l  1 1      !      !         !         1 | 
i | 
i    • III   ! 

(1.0, o, o)loj   I    |l i ! 
t    i i'l! 1 i 1  1 ■ r I i 1  1  I  1     r III!      1 i 

4 (1.0. 0, i) jo 
i 

i i   ! 
i 
! ' i 

MM! 
1          ! 

1    I 
f i 

i 

(!.<•.  1.  »}  |° ii i Ml   ■ 
!        1 i   ! 

i 

i 
i 
i 
i 

j   ! ! 1 i i 

(1. 1. 0, <>} |o|    j J |    | i I    1 j 1 1   1   1 ! 1 | 1 

"(i,I,1.0)|w|    j     jlj    |    | 1 hi ! 
I 
J 

i 1 i    i        I 
(!, 1, 3. ') 0 i   ! 

I 
i 
I 

i lit 
i    ! | i 

i ■ 1 1 | | 
i 

_:_ (0, <.', 0, 0) 

(0, 0.  1,  i) 

111 i 
!      1      1                            i 
t        !    i    !    i    1 !   |° M 1   1° (( 

4 N i 1 \ i i i i 
ill! 

i       ! 
1       i 1" | 0 i 1 M MM i°j 

,,. '   !*',   j ,   !,  t'.i   j 1 !   f 
i    ! 1 ! ! i        ; i 

j 
i 

( 
i «i «1 ! °l 1        1° j        i 

4 ■ (\, u, i.«)) i i j i   i i '   !   !   M    1    i 
MM!     1     ! "i ! 0 i 

I S   1.0 1 j  0 
1 

.;.;  0.  i. ().   M 1   * 1 !       i 
:   I 1 ! i i     1 

1    ! i j i 
i | 0 

i 

1 0 
1       i 

1   1 0 i ° 
/C "■■■ /«U* 

Let us consider first the cases of closing (Fig* 10). 

We see that the single-term factors will be assemblies 5 

and 9, They represent the following breakdown of the 

j fault functions 
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5{o, 1, 2, 3, 4, 5, 7, 8, Öt 10, 1!, 12 

y\0, i, 2, 3, 4, 5, 7, 8, 9, 11, 12 

(). 1 1 V7VH 1-2 1727 7 7 UV*2    2'3 2V8V12V14 
n.2 2 V 12 1 .3 I77787H V14    2-4 177712 
0-3 8 714    • 1-4 2711                           2-5 2711 
0 • 4 1 V 2 V 7 1 «5 * 77 712                    2-7 274712 715 
0 ■ 5 11 V 12 1 -7 174 V77H Vi.r>    2-8 178 712 
0 • 7 4 V If» 1 -8 27778711             2'° 277712714 
Ü • 8 i 7 278 1 .9 1711714                  2-11 12 715 
0-9 7 V 14 1 -11 17277 7 18 V*^    2-12 * V2VW8V12 
0. 11 2 V 15 1 ■ 12 477787H 
0. 12 i V478 

3-4 1 72 7778V 14 4 • 5 i72777H712     5-7 4 711 7J2 715 
3-5 8 7» V 12714 4-7 172 74 7 7 715       5-8 17 2787^712 
3-7 47 «7 14 VI!) 4-8 77 8                              5-9 7711 7 12 V I* 
3-8 1 7 2714 4 -9 1 7 2V 14                 .5-11 2711712715 
a- 9 7 7« 4- 11 17 7715                     5 ' 12 174787H V12 
a-1? 2 V 8 7 14 V 15 4- 12 2 74 7 7 78 
3 • 12 174 714 

7 -8 1 7274 v'8715 8-9     17277 78 71*     9-Ml 27 7 V 14 715 
7 •§ 4 V 7 V14V «5 8 -11 178 715                  9-121 I7477V 8 V14 
7 • 11 2 7 4 8- 12 2 74 
7 • 12 1 78715 

11-1211 72 74 78 V 15 

Thus, in the case of closing ve  obtain (taking I,- 

into account) the following expression for IT -f> ; 

Ili: = 5 • 9(2 V 12) (8 V 14) (11 V 12) (4 V 1$)(7 V **) (2 V 15) (2 V ») ' 
.(i2Vir»)(7VS)(2V4)(iV7Vii)aV2V7)(1V2V8)(W4V«)- 

.(1V7V12)(1\/11V14)(1V8V12)(1V2V*4)(1V4V14)(1V7V15)' 

.(1V8V15) 
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) 

Let us now proceed to the construction of the 

minimal test» 

First Methode Since 

(11 V 2) (11 V «2) = 11 V 2 • 12, 
(1;»V2)(13V^)~15V2- 12, 

(1 V " V 2) (1 V 7 V 12) -= 1 V 7 V 2 • 12, 
(1 V 8 V 2) (1 V 8 V 12} =: 1 V 8 V 2 • 12, 

•we obtain 

Hv-r>.9{(2V12)(llV2-i2)(1.".V2-12)(1V7V2.12)(lV«V2-i: 
s{(2V^MV2V^)(8Vl/0^V^)('V1/i)(W^(lV'V'Hj 

x(i V* V«)0 V 11 Vi'O (1 V/l V l'0O V7 V i:>)0 V*V ! ')■• 

Since 2 and 12 enter in the first curly bracket symmet- 

rically, and only 2 enters into the second bracket, then 

according to III? the minimal test should contain 2, 

In addition, according to 111^ the minimal tent contains 

5 and 9. After choosing the indicated elements we 

remove from the Tt ail the factors containing these 

elements as terms,     VJe obtain 

nE' = (iiV12)(15V 12)(i V? V 12)0 V8V 12)(8yi'OC» V i:>> 
.(7VW)(7V8)(1V7VH)OV4V8)(lV,1Vi/0(iViiVi/0 

•{l\/7\/15)(lV8V^')- 

TnK^np intr« consideration that 
(7 V 8) (8 V 14) (7 V 14) -7.8 V 7 • 14 V 8 • 14. 

(1V7 V 12)(1 V7 V 15)0 V 8 V 12)0 V8 V *5>----- ! V 7 " * V ,2 ' ? 

(lV4V8)(lV4V14)=:1V4V8-''4, 

(1 V 11 V 7)0 V '»I V 14) = 1 V »1 V 7 • 14,       ' 

*/ 



•we obtain 
nfi'=«(llVl2)(15Vi2)(4V15)H7.8V7-lW8-14]). 

. {(1 v7 •8V t2• i5)(i v W*• 14)(J V 11V7 • Ki;. 

.The second curly bracket has a minimal test 10 The first 

curly bracket breaks down into two factors without 

common elements, and therefore its minimal test is a 

combination of the minimal tests for these factors (H^), 

The first factor has the following minimal tests: h,  12: 

15, 115 and 15 125 the second factor has the following 

minimal tests: 7, 8; 7, IV, and 8, I1*-. 

Thus, the first curly bracket has 9 minimal tests9 

andlnone of these is a test for the second curly bracket. 

Hence by III* the minimal test for 7T£' is the joining 

of'any .   minimal test for the first curly bracket, 

let us say 11, 15, 7, 8, and the minimal test for the 

second curly bracket, i.e. 1. 

We have the following minimal test 

1, 2, 5, 7, 8, 9, 11 K 15. 

In the case of opening (see Fig. 11) we have the 

following one-term factors: 0, 3, 6, 10, and 13. These 

assemblies carry out the complete breakdown of all the 

fault functions for openings. In fact 

(0, 2V4\ 5\ 8', 9\ 10', 12'    jO, 4\ 8', 10' 
0 1\3\7\ 11' 3\2'. ^ 9'> j~ 

¥£ 



17', if ill, .ri'. !)■' jO, i\ 10' 

|.T |0. 10' (2', .V   f.V f 0 
'i 5 t\ ! 

Fron this -we have 
IJL--0.:t-G- 10. 1.1 

Chr-equently 0, 3, 6, 10, and 13 is the only minimal test, 

Note* The process of constructing a test usually 

contains a large number of calculations, and therefore it 

Is sensible to verify'in the end"whether the constructed 

set of assemblies is, ^actually a test. For this purpose 

using the constructed assenblies, one breaks down the 

fault functions: if the breakjäovm is complete, i.e., 

for each pair (f,, , O 6 '^   there erist" ln the 

constructed set an assembly such that f.,(e) r    f., !'e)5 

vie have a test» In the opposite case the set is not a 

test. An example of such a verification was given in the 

example considered* 

Second Method, Starting out with the expression 

for "V"£:    (see p. 291 /of source/) and using the 

description II«, we obtain the sieve shown In Fig* 12, 

For the purpose of economy of space, the sieve is cut 

up into four parts. To restore the initial picture it 

is necessary to consider each, lower rectangle as a 
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direct continuation of the rectangle located above it. 

In Fig. 12 the heavy dotted line and the heavy segments 

indicate the separated subset of the sieve. 

IV. Construction of Sufficiently Simple "Tests. 

One can be satisfied with"the construction of not a 

minimal test, but a test which is sufficiently good in 

that sense that its length does not exceed too strongly 

the length of the minimal test. This question has a 

greater significance if the construction of the indicated 

test is essentially simpler than the construction of the     j 

minimal test. 

We shall now indicate how, starting out with the 

7T£ expression, one can rather simply construct an test 

which is quite satisfactory. However, the question of 

how much this test differs from the minimal one remains 

moot • 

The construction of the test reduces to the 

following. 

1. In the T£   expression we choose the element 

e, , which is encountered in the largest number of 
1 

factors (if there are a few of them, we take anyone of 

these). 

2. We cross out from the T±   expression the 

factors which contain the chosen element e^ and obtain 

< 

«b 



If "[ÖL is empty, then the test is e±  .    If 

is not empty, then applying items 1 and 2 to the 

expression, we obtain ej#., etc. Thus, vie arrive at a 

test eli?, e±2, ..., e^. 

if.    Construction of Tests tovJOual^stems^ 
«fc—j—————————.- ■■—■ —————■■-.-— 

In the theory of relay-contact networks, sometimes, 

knowing **   network ftl^  which realizes the function 

fx(x , r2, ..., xn), it ^ possible to construct by a 

simple method a network $^? which realizes a certain 

function f?^
Ti? x2? ***5 Xn^ 

The question arises whether it is possible in 

some cases, knowing the test ^ for the netwrok tf^, 

to find a test T„ for a certain network ßl?  and bypass 

laborious calculations• 

To formulate the result let us give a series of 

definitions.. 

Definition* The function f* -J**^ \±  •••' yn
} 

is called dual to the function f(xx, x2, ...,■ xß). 

Definition* A network Cl   is called fl***^  *•/- 

the network which is obtained from 0V by joining a 

source circuit between the poles can be horaomorphically 

placed in a plane. 

Definition. A network Hi*  is called dual with 

respect to the planar network fo>  if it is constructed 

¥7 



V 

In the following manner. The planar net-work 01   together 

•with the source link breaks up the plane into regions. 

tfe choose in each plane one point — the vertices of the 

future network. For the poles of üh *  we take those 

{Vertices, -which correspond to the regions that have the 

source circuit as part of the boundary. Next, each two 

vertices of "network 0l*n  is joined by means of contacts 

r±v  xl2, ...,^lp» «here x^, 7±?,   ..., xip are all -Hu. 

contacts located on the boundary between the correspond- 

ing regions; if both vertices are poles of $,*, we join      ( 

them with the source circuit. 

Example. Fig. 13 shows by means of solid lines 

the network ffl, and the dual network Ol*  is shown dotted.     j 

From the definition it follows that ^ is a 

planar network. 

As regards the dual networks, the following 

theorem is known, obtained by C.  Shannon /?/. 

Theorem. If a function fCx^, x2» ...? x ) is 

realized by a planar network öl , then the dual network 

Ol* realizes the dual function f*(x1, x2? •••> xn). 

Proof. Let us run briefly through the proof of 

this theorem. Let the network 61*  realize the function 

f'(x , x9, ..., x ). Let us consider the arbitrary 

assembly oi  , <* , ..., o< . Two cases are possible. 

*i 



1) f( O* ,<*,..., c* ) = 1. This means that In 
12       n 

the network ffl    there is a path that joins the poles a 

and, b, and in the relay states o^ , °<2, ..., o<n 
a11 

the contacts along this path are closed. Corresponding 

to this path in the network (ft* is a set of contacts 

(of equal designation as the contacts of the path 

considered). With this, if all these contacts are open, 

and this takes place for the relay states d ^ , c^2? • ••? 

then the network ^l* is open and, consequently, 
n 

V{dV  °S.» •"' °in) " °* 
2)  f(c<   , ^    ,...,#    ) = 0.    In this case,  for 

12 • n 
the state    of the relay/o^,   o<2?   ...,   ^ the network 

is open.     It  follows therefore that  there erists  a path 

in the network Öl  *,   Joining the  poles  a!   and b«.    With 

this,  this path passes  through the open contacts of 

the network ^ .    The latter means that at the relay 

states oi. ,  <*"   ,   ...j5^     all the contacts on the con- 
1        c- n 

structed path .are closed.    We obtain 

f(äv ä2, . . ., *«) = i. 

Thus, in both cases 

or 

The theorem proved makes it possible to construct 

from a planar realization of the function fCx-p x2, ;.., 

<H - 



x ) a network for the function f(x. , x?? •*.» x^» 
n 

Assume that a planar "network ^ realizes the 

function f(Tx, x2, ..., rfl). We denote by M the set 

of faults of the network ^(closing or opening of 

contacts). We have seen that to each fault a t    M_ 

there corresponds a fault function ^te^» x2' *,,, X« 

The fault a breaks down the set of all the contacts of 

the network fjl   into three subsets: k^, kg, and k^, 

where k consists of the contacts which are short 

circuited, kn of the open contacts, and k~ of the | 

remaining contacts. It is obvious that corresponding 

to this breakdown of the contacts of the network öl  is 

a breakdown of the contacts of the network fa-* (the 

breakdown is generated by dual correspondence). 

Let us consider the fault a* (dual to the fault a) 

of the network Ol  *, at which all the contacts of the 

set k are open, the contacts of set k are short 
1 

circuited, and the remaining ones are in proper  working 

order. We denote by K* the set of faults a* of the 

network 61*,  where a runs through the set M. From the 

preceding theorem^it follows that the fault function 

f* (x , x , ..., x ) of the network &*, corresponding 
a* 1  2      n 

to the fault a*, is 

/;.(*,, x2,..., o= [/.ft, *t *.)]*• 

i 
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'It follows therefore that if f (x, , xoS *.., x ) is the 

fault function of the network <fl , then the fault 

function f* (x-, * ^,? • ••» x ' for the fault a* of the a* 1" £' n 
network ^-* is dual to f (x^, x2? ..,, x ;* 

Let ^ be the set of different fault functions 

of the network $i   corresponding to the faults M. Then, 

denoting by 3?I* the        set of fault functions of 

the network A-* corresponding to the faults M*. Let ^- 

be a certain subset of unordered pairs of functions 

(f , f ) of the set ffli , excluding the pairs (f , fh) ab u 

where f s f . We place this subset in correspondence 
ah 

vith the subset #1* of the pairs (f* , f* ) of the set 
ca.     CJ 

. :')^l*e Obviously, ^* does not contain pairs of the 

formCf* , f*J %-Jhere f* «  f*   since we would have 
a*  b*       a*     D* 

from the foregoing result (f )* ^ (ffe)* or f& -e fb, 

which contradicts the definition of the set "Tt- . 

Theorem» Let T = |(°^1» ^g' '•*> "^nV be a 

test relative to the subset $~  for the network ^" 

and then T* r { ( ^ ■,» *^2> *oe? ^ "*  is a test 

realtive to the subset Tl*  for the network &' *, and 

vice versa0 

Proof. In fact, let (^(Xj, x^, .., xn>, 
fv^i» 

x0? ..,, x )) £ TL       • Since T is a test, there 
*s      n 

exists an assembly (o^, «^2> .••> <*n> "6 T such that 
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From this we obtain 

/«(a,, Sg, ,.♦.., «J^/*^ 5»,..., as) 

VÄ    

Taking into consideration.the connection between the 

fault functions of the network ®*  -with the fault 

furjctions of the netvork $}, % we obtain 

Consequently, T* is a test relativ« to #2* for-, the, 

network ^ *# 

The Inverse statement follows from the following 

Corollary. Corresponding to. the minimal test 

with respect to %  of the network ÖV  is a minimal test 

wlth-resp&Bft to '$L* of the network & *. 

Example,, For the sake of illustrating the proved 

theorem let us give an example in which we construct 

in parallel a test for a planar network &)/ arid 

a dual network </l-*      ', in the case when the 

permissible fault is the closing or opening of some 

single contact. Attention should be called here that 

the closing of "contact in network 6V corresponds to 

jT5 



o- 
opening ofKcontact  in network UL * and vice versa. As 

in the preceding examples, cases of closing and opening 

of the contacts are independent, and are therefore 

analyzed separately. 

;     Network tl  (Fig. Ik)  realizes the function 

Si,s.4. (z, y, x, u>) = xyzw V xQzivV 
V Jtyzm V tyzw \J xySw V xyzw V 

V xySio \f xyzw \J xyzw 

while network  #L*  (Fig. 15), which is dual to network 

realizes the function 

.$«.*(*»   .V. z> w)^xyzw\/ nßw\J 
V xyzw V x.gtw\/xyiw\/xipw \Jxijzu* 

The fault  functionsfin the case of closing  (network 

ft,)  are shown in Fig. 16, while the fault functions  for 

the  case of opening  (network   fa,*) are shown in Fig. 17. 

By gathering together the states of the networks 

for different values of the assemblies shown in Fig. 16, 

we obtain a table for the fault functions  for closing 

(Table 3),      Similarly, by gathering the states of the 

networks  for different values of the  assemblies  shown 

in Fig.  17, we obtain a table of fault  functions for 

opening   (see Table *+). 
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Table 4 

+ 

(*, y, *.»•) 0 1' 2' 8' 4' 5' 6' r 8' 9' 10' 11' 12' 13' 14' 

(i, i, i. ') 1 0 0 0          0 

(1, l, o, 0) I 0 0 0 0 
i 

(1, 0, 1, 0) 1 0 0 0 0 

(1, o, 0, 1) 1 0 0 0        o 

(0, 1, 1, 0) 1 0 0 0 0 

(0, 1, 0, 1) 1 0 0 0 (i 

(0,0, 1,1) 1 Ü 
1 

(1 0 0 
i 
] 

Let us 
construct expression HE 

'z~-1'i> U:\ — /H 
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11 
ft (10, 12, 13 
0 \0, 1, 2, 4, 5, 6, 7, 8, 9, 
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The expressions for |T£ go into each other when 

the assemblies are replaced by their duals« It follows 

therefore that\£ach test of one expression there cor- 
■■■--     "A 

responds a test of the other expression, and vice versa. 

'• For the case of opening, the fault functions are 

shown in Fig. 18, and for the case of closing, the 

fault functions are shown in Fig» 19. 

Gathering together the states of the networks for 

different values of the assemblies shown in Fig. 18, we 

obtain the fault functions for the constructed functions 

(Table 55. Similarly, gathering together the states of 

the networks for different values of the assemblies 

shown in Pig. 19, we fcbtain Table 6 for the fault 

functions* 
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Let us con- 

struct expression   US' 
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As in the preceding case, we verify that to each 

test of one expression there corresponds a test of the 

other expression, and vice versa. 

5, Single Tests 

As follows from the definition, the form of a 

test for verifying one and the same network 0}/, 

realizing a function fCr^ x2? ..., *n), depends on the 

choice of the set 23-. In other words, the form of the 

test depends on the fixation of the permissible faults, 

and also on the degree of detail to which it is 

necessary to carry out the analysis of•the faults* 

From this point of view, it is possible to 

classify the tests, We shall not dwell in detail on 

this question. We shall note5 however, a few types 

of tests* 

1. A single test for the detection of a faulty 

contact, vhert it is known beforehand that the fault 

(closing or opening of the contact) is possible for 

any contact,, Isut also for one» 

2. Test of a relay for detecting faulty relays 

— the permissible faults are' &    short circuit   or 

an open circuit In the device that controls the con- 

nection of the :power supply to the relay winding. 

In this case, as can be readily seen, the form of the 

£T 



'test depends only on the function and is independent of 

the choice of the network that realizes the given - 

function. 

3. Complete test for the detection of faults in. 

tcontacts, when the permissible faults are a shorting orr 

opening of any contact (possibly of several contacts 

simultaneously). It is obvious that any test for a 

contact nöirwoi* is contained in a certain complete test. 

It is important to note here that although the 

form of the test depends on the choice of the set uu , 

which in the final analysis depends on the structure of 

the network, in many cases one can startAnot from a 

specification of the set ^ , but from a list of certain 

requirements which are independent of the form of the 

network. This, for example, is the situation for the 

foregoing types of tests. In those cases when the 

problem is formulated in terms which do not take into 

account the structure of the network, it becomes 

meaningful to raise the question of comparing tests 

corresponding to different networks. 

Let tw N be the shortest; length 
*(*1> *2T ,.., xn) 

of the test in the examination of all the network 

realizations of a function f(x , x2, ..., *n5• Let 

furthermore     t.  .     . t (n) = max f/(r„ *, *„), 



«hero max is taken over all the functions of algebraic 

logic, which depend on n. arguments. Then, naturally, 

the following problem arises«, 

What is. the asymptotic expression for the function 

t(n) for any type of test? It is- clear here that 

t(n) 4   2\. 
For example, it is unknown whether t(n) <, 2 

in the case of complete tests. In  other words, how 

sensible is the formulation of the problem concerning 

a minimal test (see note in connection with the defini- 

tion of the complete test). 

Along with these questions, one must also raise 

several other questions concerning tests. 

1) How are tests changed when networks are 

:transformed? 

2) Let Iftl be the set of different fault 

functions of the network fa  for a given type of test. 

What is the estimate of the cardinality of the set ^? 

(in this way ire-  can obtain an estimate for t(n)). 

Let us proceed now to a more detailed examination 

of unit tests» We are concerned with unit tests because 

this case is in some sense the simplest« Whereas, for 

example, in the case .of a complete test, even for simple 
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networks -with 5 or 6 contacts, large calculations are 

necessary to construct the tables of fault functions 
t 

(if t  is the number of network contacts, 3 faults 

are possible). 

Since for any  £ .> 0 one can indicate such a N5 

that any function of n   > K arguments can be realized 

•with a network x^ith a number of contacts not greater 

then (1 4 £  ) &"1' */n  /f^, then for n ^ JI 

/'(w)<U-H>-~~' 

The latter follows fron the fact that the length of the 

test does not exceed, the nunber of all the fault functions . 

It follows from this result that when 

i u.::\i^;:< 2%  T. v.  n>S(l-f s) 

the problem of finding the minimal test has a full 

meaning in that the length of the minimal test, roughly 

speaking, amounts to 8/n of 2n — the length of the 

trivial test. 

We have seen in Sec. 3 that a unit test breaks 

up into two independent (non-intersecting) tests: a 

test for a short and a test for an open circuit. Conse 
quently, 
the problem of the construction of a single test 

breaks down into two independent problems. 

For further analysis it is useful to investigate 

if  — 



the tests fron the geometrical point of view. 

Let f(x . x_, .... x ) be realized by the network 

ffV. To each function f(x, , TU, ...» x ) one can set 

in relative unique correspondence a certain subset P 

!of vertices of a unit n"-dimensional cube? precisely, 

P is a set of all such points >C< s  j©^, <* 2, ...» «* nj 

that 

For example (Fig. 20) 

/(x,, x2. x3) = r^ -f- #2.4" a"s (mod2), 

/>== {(1,0,0), (0,1,0), (0,0,1),.(1,1,1)}. 

Let us put 

where ITl    is the set of flault functions in the case of 
r\ 

a «in^le closine, Tfl the set of fault functions in the 

case of a single opening. We denote by Q the set of 

"closings", i.e., the set of all those vertices of the 

n-dimensional cube, in each of which all the functions 

from "*^L do not assume one and the same value. Analo- 
q 

gously, R is the set of points of "openings," i.e., the 

set of all those vertices of the n-dimensional cube, 

in each of which all the functions from TH,    do not r 
assume  * one  and  the same value. 
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OToviously we have 

Q CC P (complement to P), R CP. 

We introduce on the set of the vertices of the unit 

n-dimensional cube the following metric  (see fi-7) 

P(«. P)=l«i — Pil + I«« —?al-h ... +1».  -?.|. 

Let M be a certain subset of the points of the vertices 

of the-"unit n-dimensional cube. Vie denote by S(M, 1) 

the set of points p of the unit n-dimensional cube, such 

that there is found a point m £ M, for which 

(p (pj m) = 1. 

We consider the set P \ S(P, 1). Those »efc» 

assemblies from Q, which enter into this set, are 

called false. False assemblies are due to the presence 

of false circuits in the network (compare with Sec. 1). 

Vie note that the set Q can coincide with CP and 

R can coincide with P. For this purpose it is necessary 

to realize f (x. , x . ..., x ) by means of a M network, 
JL  2      n 

corresponding to the conductive normal form and 

respectively to the disjunctive normal form. 

- 7* 
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Chapter IT 

Methods jof_ ^ns^42li!lSj[®.^!Ll2r. 

'Individual Classes of Networks 

The investigations of Chapter I show that the 

general algorithm is too cumbersome even in the cane of 

construction of minimal single teste;. Apparently, the 

cun'ber-orreness cf than algorithm is due to jts univer- 

sality (i.r.., duo to the circiyr.rtanco__that, it is suit- 

able for ony function l(r , x?, ..., >'rj) £ 
F
2 and any 

network £l that realizes it). One could dispense with 

the requirement of minimality, replacing it -with the 

requirement that the length of the test, for the_ net- 

work 1)1,  realizing the function f (x , y?,   ..., yfi) 

have an. order not exceeding the order t(n), i.e., the 

order of the pre ate?t length of all the lengths of the 

minimal tests over all the functions of n argument-;. 

Vie shall not touch upon this question. One can advance 

here the assumption that the general algorithms, as in 

the case of the synthesis of relay-contact networks, 

will £iva,for irv3ividu.il networks (although they are 

simpler than the common algorithm for the construction 

of the minimal test). greater deviations from the 

minimal test. Taking these considerations into account, 

one can indicate two paths in test theory: on  the one 

7* 



hand, one can forgo an  examination of all the functions 

and all the net-works, and on the other hand one can 

modify the concept of a test, for example require that 

the error occur with a probability, say, greater than 

1 - € . 

In the present chapter we shall touch upon the 

first side of the matter. Here the problem of construc- 

tion of tests is solved for individual classes of 

functions with allowance for the singularities-'of the 

synthesis of the networks. In these considerations, a 

decisive role is played not by.the table of functions, 

but te¥ the,method of.specifying the table takes into 

account certain contenful singularities of the 

structure of the functions. 

6* Tests for Networks that Realize Elementary 

Symmetrical Functions 

In the study of symmetrical functions from Pg, a 

fundamental role is played by the so called elementary 

symmetrical functions, i.e.,, functions of the form 

3k{xv  ^, ..., *„)== V a?&a?& ■ • • &*£ • 

\ X    frt/   6=1. 
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The function S ssouoes a value of 1 for those 
h 

and  onlv  thore  ancerubiiec-   (of   .   <,/, ,   ,,,,  o<    )  In which 
i        r-- n 

1 is encountered exactly ']•:. times. 

c known. /'//,   "the  furiotio '■ p 5     . *«1 

-  •■; 4  x; pan    hr>    TV~: r, 1 i ;.;p0    f?V    a    notVIOFk     '/        -. .   V,'Ith    OpO 

«   (r!  „ k)(k 4  I)  coritaccc   (tin..  21).    t'or thir?  o'lasn of 

natoa-noni.,   too  oner lion  arioon   o"?  the  cor.r.tract :ion  o!   5 

oulkh.etenhly  !i-;ooo'N   single  tost:  for   doming,    chi? 

or-hion  it   of  intercut  in  connection tilth  the   fact  that 

the   construction of  a   "1 rpole  fed  reoaceo  to  too  c ca- 

nt ruction  of  a dndc   ted   for dodm'  end  a  pinole 

tod.   for  op~nfne«     dr  this   purporo,  vie eetdlid   the 

o i .s.ooun 

.mooreo,     i!or   of   riLO'JC. r~    J ,.   1,5   '■•'-■■■ <.--i   -J        "-■<   v- 
■circuit 

one   can  construct   a  r.ingie   short-   ,oeoo 

vine re 

* 0- (n k -I- i) (Ä 2) 4- (n - A,-) -0 f "dAif 1 \ 4~ 2 '*/>« /; > 3, 

k:!:.* "1 1.. •> / < (A 4-1} (« — A; — 2) 4- ft 4- [ "-;"•- ) f • - npu n - Ar > 3, 

d=4   «/)«   ßr-3,   A™ 1,2    ' 

For  convenience,  vie  reroroher  the  contact:;   of   the 

0*tfr-vv  V     .    in   the  foiled no  no oner:     vie   introduce  a netvoori & n,k "'" 
svoteo  of  coorcinaoOe ..ncicatoo   in rig.  at. ■"si-   ^et 

7V 



in-correspondence each »horizontal" (cloning) contact the 

,.     t\ ~?  -ifr. ipft end (the first co- 
coordinates (i, 3)^  Ci l1":s "CJL ^ K 

'izcntal aris* the ordinäre is rec koned along tnc non 

second along the vertier a ,L one) = and to each »Ü -, - ,-s -r> -*- "t P ft; 'X C-S. i- 

(opening) contact we set in correspon äence the coordinates 

(i  1) .  of its upper end. Obviously, for the co- 

r,v,,^«PfPq (1, i),  -we nave 1 o 0  •<- S-   k 

0  < n k; for the coordinates \i, j; we have 

04i^kand04Ö^n"k'"'Ua 

We  shall  construct  a test   in  the   form ?  * ^ 4 T2  ♦ 

4 T_.  * T,,.    Simultaneously ve shall verify  that vith the 

aJ/of  /one  can establish any single  closing  in  the 

network   V     ,   and  thereby  prove  that  T  is   a test,    We 

rut k ^>    2, 

1) With: the aid of the assemblies \  ^ determine 

that" a) either a vertical contact is out of order, b) or 

else a horizontal contact is out of order or the circuit 

is in working order. 

Let the aggregate T, of the assemblies be defined 

in the following manners 
n-k-t A + / 

n-k< 

7$ 



On the assembly 

0 ... 0 1 ... 1 0 ... 0 

the correct network )(     , assumes the form shown in. ü n,k 

I Fig. 22, 

Consequently, the network operates if and only if 

a single closing is contained in the vertical contacts 

of the i-th horizontal strip. If for all the assemblies 

T the network does not conduct, then either the network 

is in working order or else there is a single fault in 

the horizontal contacts. We note that here in the case 

of a fault in the vertical contacts, we establish even 

the strip in which the faulty contact is located. 

2) Let us assume that either a horizontal 

contact is faulty, or else the circuit is in working 

order. We shall show how to continue the analysis of 

the circuit in this case. Let us consider the set Tg, 

consisting of.two assemblies 

»-Ml 

a) 0 ... 0 1 ... 1 

B) 1 ... 1 0 . ■. 0, 

Obviously, on these assemblies the network y^k assumes 

correspondingly the forms shown in Fig. 2.3, It is clear 

that in the casA of assembly &   the network conducts if 

.and only if the horizontal contact of the 1-st column is 

— 71 — 



tt I 
>-I 

L- 

v L, 
£-■/ Band 

xsw/tetoBciBew-jnaaiK, 

** l__ 
/W 

— •»»--»•-»—'—— 

€ 

a 

7u *i. <^ 3 

ifr 

a 
J! 

6 

- / / 



ä     conducts 
faulty.  In the case of asr-embly P^^hen a horizontal 

contact of the last (k-»th) coIur>;r> in at fault.  If with 

r<  t h. t lrcu.it öoe-  rah 

vi  oithnr the nafaorh In in voT'kinr 

order, or else the horizontal contact in tho "nicKlÜ.o" 

columns is faulty«  Cohen / in this  case the 

c 1 r c u:* t  i r?   .1 a v ork:; n f*  o r(3 er). 

a) Let; un anrnnuma now that aithor the network 

is in 'working order, or el?e a horizontal contact 

in a middle column (k ;> 2) i? fault}'. In thin case 

■we consider the set ';.'-. of ansenhlie" 

ft —A 4-1 

/: — 2 

/f -- 2 

« •■■■ A- k- ■','- 

"... (ViiOH  ... Ill 
0 .  •  . 001101 .      . Ill 

v, . . . o-'imi . . . loi 

0 . , . 0101] 1 , . . no 
0 . . . 031011 . . . 110 

o . . . oirm . . . oio 

101 ...   no . . .       n 
110 ...     130 . , . 0 

111 . . .     0J0 ... 0 

We  take  the  3.-th   arca-mlly  In  the   ti-th bo: 

«a--/-!' •" k-i~\ 

oT.. o \~7~i i) T... i u ... o. 

it 



With this assembly,the -network assumes the form 

shown in Fig. 2h,    Consequently, under the assumptions 

made (k »2 ^ 1 „$s \)  the net-work operates if and only 

if the horizontal contact (i, n. - k - j 4 1) is faulty» 

■ 'in  the case when the net-work does not conduct on the 
I 
"assemblies from rL,, it is in working order» 

b) A horizontal contact of the first (or respect- 

ively last) column is faulty, Let us consider the 

aggregate of assemblies for k Sj 3 

'ri-ft+f 

f 0 o... 0 0/' .. 
0 0... 0/7 0 / ... t 
Q C.yfl 0 / ,..//0 

This aggregate consists of the assemblies of the set T2 

and the first assemblies of each box of the set T ».If 

k a 2, then we add to the set T2, for n s 3, the 

assembly { 0, 1, 0 } = T , for n = ^ we add the assemblies 

{o, 0, 1, 0 and 0, 1, 05 0 } = T^. Let k £    3. Then 

Wlttbe (,i * X)~th assembly (1 ^ ;] ^ n - k * 1) the 

network has the form shown in Fig« 25. 

Let us write out the. table of fault functions 

corresponding %<» respectively to the contacts (0, 0)^» 

(0, l)h, ..., (0, n - k)h,-(k - 1» 0)h, (k - 1, l)h, ..., 

net 7f 



(k - 1, n - k^wlththe indicated assemblies 

(Table 7). It is seen from Table 7 that   the con- 

sidered assemblies the faults in. the horizontal contacts 

of the first and last column? is completely localized. 

In the case k » 2 it is easy to verify that it is also 

established which horizontal contact is faulty (under 

the condition that a horizontal contact is faulty). 

3) Assume nov that it is known that one of the 

vertical contacts of the 1-th strip is faulty. 

a) We put first k \    3.*Iththe assemblies con- 

tained in (n - k - f)-th box (0 ^ i    ^ n - k - 1), 

and the last assembly contained in the (n - k - i  * l)-th 

box, we make up a table of fault functions (Table 8), 

corresponding to the contacts 

(i, £)v, (?., *)v, ..., (k - l, *>v- " is clear 

therefore that when k %    3 the fault in the contacts 

(], f)v, (2, f)v, ..., (k - 1, ?)v..U.e.> vertical 

contact- of the (£ + l)-th strip excluding the extreme 

contacts) is established.  In the case k = 2 for 

n = 3 we take the assembly (0, 1, 0) and the assemblies 

(0, 0, 1, 0) and (0, 1, 0, 0) for the case n = h  (see 2, 

item "b"). With the aid of these assemblies 
presence of 

vie detect the faults in all the vertical contacts, witn 

the exception of contacts (0, i)v and (k, i)y. If witil 

ithe indicated assemblies the network does not conduct, 

10 
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w e have case "b," i.e., the vertical contacts of the 

form (0, i) and (k, i)v are faulty, v 

Table 7 
■t'^»M.»iMtJU»iJh*«*tt«>«i«MiMMAiM«l«>ci"*< 

C3 

r ~ Q^u/r.. 7 0 

0    0 ... 0//    °J~J: 

0   0 ••/?_ J}_ ^-,/D 

„.aus.. 

IT" 

ü Tu 
Ü     0 

0 / 

We note that when r,  -  k s 1 the faults correspond- 

ing to the contacts (0, 0)v and (k, 0)v are indistincuisl 

able, since to them corresponds one and the same fault 

function 

It therefore remains to consider the case when n - k 

Let us consider the (n ~ k ♦ J/2 assemblies (the set % 

Jr 

i i i ... "i o i o o o ... o, 
oo i ... i 1 i o i o ... o, 

f* 



Table 8 

(UiK   !    (~,lte \(k  -Z.fh:   'Ä 

k - i - i 

\ I). , .0 ion 
I.     

; i 
:      So    ,       .       .0     1101 

!■  0 

i) .  .  , o 

i i       .    . 01 «i .    .    . <M 

0  l[U  .   , ci  0" .   -   -0[        <> 

M   - h   I   I 

!} 

Here each succeding assembly is obtained from the 

preceding one by shifting the oner? to the right by two 

columns, vith the exception of perhaps the last one 

(for odd n - k), when the ones are shifted to the right 

by one column, toith these assemblies,the network has the 

form shown, in Fig. 26* it is seen therefore that in 

the case when the extreme vertical contacts of the first 

strip are faulty, then if the circuit conducts with the 

1-st assembly, then the contact (0, 0)y is faulty, and 
* -^ tV 

if the circuit does not  conduct^" the 1-st  assembly, 

thpn   the  contact   (0,  k)     is  faulty.     If  the extreme 

vertical contacts of the 2-nd strip are  faulty,  then  if 

the network conducts^^the 1-et  assembly,  then the 

,„_   <r %l 



.., ~t  j-p, -r j-, , * T,, (for n - k ^ 1 we have 
% 

contact (1, k) is faulty, end if the circuit does not 

conduct <ac the 1-st assembly, then the contact (1., 0; 

is faulty, etc. This completes the proof of the fact 

that T a T, . 4 T«, ♦ T. 

T, empty) is a test. 

''     Let us estimate the length t of the test T. F0r 

this purpose we recall that 

t  —2 

(«_. *_[_!)(*_ 2),    *>3, 
1, A = 2, n=3, 
2, k = 2, n = 4, 

£4<[JLn*±i] (==^v„-.ft>i). 

Thus 
/<(/i--*-f-l)(* —2)-f (n--*)-f 

r » — * +1 ]~f2 at A>3. (*) 

If n - k -^ 3» then by        making a change of 

variables y. = y_ > *2 ~ "^?' •*,,xn = ^n' the function 

SkCyl' X2» •••» *n5 Eoes int0 the functlon Sn-k(yl' y2> 
.... y ) and the network Yn k goes into network y ft n_k» 

Por the network   , , it is possible to construct, as 
n,n-k' 

above, a single closing test T z  I (^J <*2' '"' °^n ^3 

of length 

*<(M- l)(«~*™2)4-*4-[A±Aj-f 2 np« ft-~&>3.   (**) 

It is obvious that T* -- l(5i ;'   '  n 
is a 

single test for closing for the network j^ k» 
with t*=ti 

%i - 



If k   ^   3 and n - k     "^    3» we take that  group of 

the tests  for which the estimate'«'*) or  (**))  is lover, 

We denote by m the number of fault functions 

(equal to the number of contacts }| vie obtain 

m = k(n — A -f-1) + (ft — k) (k -f 1) = 2k (n — k) -f n. 

estimate the ratio of the length of the obtained test 

to the «umber of fault functions, i.e, to the length of 

the trivial test (see Chapter I, Sec* 5). 'We have 

We 

JL 
m 

m   """ 

1 .   3 ,   ,   1 L. m •-- n -f- — «' -r — ■ 

m. 

1       ,    n 

^     /j — A*^;'3. 

Since  the cases k « 1 or n - k = 1 are trivial, ve shall 

assume that k j£    2  and n - k   ^     2. 

The expression  (~ n *$-* 3k/2  * l/2}/m, where 

V   <    n  - 2,  reaches  a mrimian vhen k » n - 2.     In fact, 

in  this  case  the numerator 'will have  a maximum and  the 

denominator a minimum.    Analogously,  the expression 

(n/2  - 31c/2 4 1/2)/«,, where k   >   ?-, reaches a test 

maximum k = 2«    Thus 

...   3 k _j_ 1 i._ 1*4-1 
 ä a. < o, 1 W — 1 ±~ <" 0,1. 

Consequently, when rain  (k, n - k)   >   1 ve have t/rn   < 0.6 

fs- 



The preceding theorem gives a way of conntrueting 

a single closing test for elementary symmetrical functions 

S       , realized by means of the networks V . . The 
n 5 k " ; n ? - 

natural question arises, however, of how "good" the 

constructed tent is, i.e., in other werde, how strongly 

the length of the constructed tent differs from the 

length of the minimal teat. Here we shall not give a 

complete answer to this question. For the case of 

qyvrmietrical function?; 9,        , we shall propose a method 
''"'"~ "" " n ?n-i 

of constructing a minimal test.* From this it is 

already easy to obtain a. desired comparison and to 

conclude that the previously constructed tents are 

ccjrrcletely satisfactory. 

* Vie have in mind the networks Y   , . v n JU—J. 

Theorem. For networks V   . the length t 
ß  n jh**j. iiixn 

of a single minimal test for closing T^, is equal to 

n    -fq /3I4 1, where q s 2(n - l) is the number of 
':n  L n J n 

horizontal contacts of the network jf ^ n-1« 

Proof. We shall show first that t^^   >^    qfl - 

iq//3"U 1. Vie note first that the fault functions 

corresponding to the first and last vertical contacts 

are Identically equal, i.e., f^ = f^ (see p. 313 Jot 

source?). It is further evident that to 

rt 



establish faults In. the extreme  vertical contacts it is 

necessary to take the assembly o(     ~ (1? 1, ...» 1). 

issembly makes it nossible to distinguish the c&$® o i 

when a vertical contact is out of order from the cane 

when either a horizontal contact is out of order or the 

network is in working order« Thus* "ram 
z> -x0. 

lit"1"*"   fij'f'rKp wf-iO^'o f1 I1  ^**»"   Y          -wh^ro '^'   i17'  tbo frp^t 
'"""' ""  "     "--""■ 'min5    '" "  *  

for  faults  in. the horizontal  contacts*    By virtue  of the. 
"7" 

preceding remark one  can. assume  that  o<    £;:    T w. e 

denote by t; *  the leneth of the minimal «nit test for 
rain 

closing in. the case when only the horizontal contacts 

can he faulty. We then have the following inequalities 

for the length t' of the'test T'; 

nor the network 
nsn- 

are tabulated In Table 9* 
0   1 

Hote«  The assemblies (A    , otlC) «4 i) and also 

+■ in /~i  f' ! :no .     f,.t.* .P .ph /* r 5    jl        fpoyi   f;he    tumble or 

the network V ■X'B  identical with the correspond- 

ing assemblies and functions fron the table for the 

netoork ]f ,  .m--L for n
f>  n. The validity of this 

identification is connected 'with the fact that both 

tables are identical within the limits of the first 

n 4 1 bores, 

*7 



Table 9 consists of n bores, the construction of 

which, starting with the first, has  quite definite 

regularity. We shall agree to denote the assemblies 

V öT1« where the superior inder denotes the hoy to 

which"the n'ivpn assembly belongs and the inferior index 

:denotes the number of the Riven assembly in the bor, 

starting with the uppermost. Let us ermine the part of 

Table 9, corresponding to the horizontal contacts. It 

;!s easy to see that this part of the table satisfies the 

fr ̂Hawing requirements : 

1) Bach row contains exactly two      ones; 

2) There are no identical rows or columns; 

3) There exists one one function fQ, to which 

corresponds a column containing no ones. 

Let f_ be an arbitrary fault function from the 

considered subtable, with ^ .|£ fQ.  It is obvious that 

one of the assemblies on which the function ^ assumes 

a value 1, should enter in the test, V,'e denote this by 

o< . By virtue of property 1, ™ find in the subtable a 

funetionfthat assumes a value of 1 with the assemble x. 

Lot us consider a set of all such assemblies, on which 

f.. - 1 or f0 - 1.  Let *(<*,, 4~ * x)  be an element 

of that setwhlcii en-,into the test ~ such an element 

will always be found, since f?   £   f^and by definition 

the test contains an assembly which distinguishes the 
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Table 9 

s 

1 
Assemblies 

/o- 

Horizontal Contacts 
\ 

Vertica: 
Contact 

L 

3 
!   1 

*i 
1 j II 1 
!       i       i       j 

^|/Io|/Jj/&(••• j/5ij/nj''»|/«j 
i      i      1      ! 

1     i     1     1 
>  * 

.« n 
1 i i i i 1 ... II 

i 
t 

1 

i'** 
j 1 

t 

1     1 i I ... 0 

1 

2 

i 1 1 
0 | 0 ll>{. ... 1 | 

i      1 

1   I"" 'I 1          1 

i     1 ... 1 ' 

! 
0 i Olli 

i   j 
... 1 

i 

... i    i * 

!     f 

1     j 
1           1  J 

1 1 
i 

l 
1 »  t ♦ 

3 

3 

'3 

ll 0   0 'I'l- 1 
!    i 

...| ] 

i     ! 

1  I 
i 

... 

10 : ! 
■ ] 0   1  ... 

1       i 

• i-i !■ 
L.1 

1     1 ... 

3 ll 0 l 0 1 ... l 
i      1 

' 
1 

,i 
i 

1 
i    i 
11 0 0 1 I 

1      I 

Mi; 
|M    ••• 

'ill! 
.1 

i 

1 |     i 
1       I 

i 
i 

!'- 

A 
!   S   1   i   1 OJlliljOJ.., 1 |    |    j    ]    j     | 

! 
i 

1 
! 
1 

< 

|        j        1 
1 r ' l \ » * • 

-   4 
4 1 0 

j 1 
110 

! 
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functions  f,.   arid  fn   (it  follows,  incidentally,  from the 

pi-ODorties  1 and 2 that on any assembly different  from 

öC   and  contained in this  set«  the functions  f    and  f 
b. ' 1 2 

are  u ietincul shable ■   i«e»»   thev  pn^neie  oonoaite  value") 

lows  fron pro'ocrtv 1 that' there exists  a function. .p.,,. n 1 

fh, such that it assumes the value 1 on the assembly öC 0 • 

-'onr^e^.'uentlv. on tho assemblies o(     and c< ^, the functions 
1      2 

i' » f „ * and f-. are completely distinguishable (Fig. 26}f 

an.d the corresponding faulty are detected*  It is obvious 

that these a? s em bid es do not break down in any manner 

the remaining set of functions of the investigated part 

'.~:$  tno table e he erase out fron the thole the columns 

f'nr'TP:'jr;onhnu to the f nnnti on? f , f * and f as well as 
■i    c 0 

the roes corresponding to tho assemblies ,:x      and °( „ • 
1      2 

In Idie remaining table there can aroear identical rows ? 

and in. the successive steps also rows which do not 

contain one«»  Let us perform the following operations 

nn the tno Le «  J;U"» 

1) Ahe leave only one representative for each of 

the identical rows; 

2) yle  cross out entirelv the rows which do not 

contain ones * 

he then obtain a. table which need no longer 

satisfy requirement 1, for it may contain rows which 

contain a single one each»  Let us take arbitrarily 



'the function f» from the table. One of the assemblies, 
with 

which it assumes the value of 1, should enter into 

the teste With this, two cases are possible. 

a.) There exists only one assembly with which the 

function is equal to 1, and the rot? corresponding to 

this assembly contains only one 1.   Such an assembly 

must enter in the test; on it only one function is 

defined« 

b) There exist rows (or a row) corresponding to 

ass em blies, with which the investigated, function is equal 

to 1, and containing two ones. 

Using, arguments,similar to those made for 
regarding 

f„  ' tne function f, we either separate three functions, 
1.) H 

'■which are" distinguishable completely with the: 

two assemblies, or else, if this can be done, we 

define two functions that are distinguishable with the 
two assemblies. 
(There are no other possibilities, 

for In none of the steps can identical__onlumns occur). 

Frorc. this we see that violation of condition 1 can 

lead only to an increase in the test compared with the 

ideal case, when for each step condition 1 is satisfied. 

Since the initial part of the    table (for the 

horizontal contacts) contains q = 2(n - 1) functions, 
n 

we obtain the following estimate 
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f       Ji*    -1"-    * Z 4" Ö- —*   4r- * ** "'/«™    ~r    • »i» ^ L 3 J      ' L. 3 J L J J 

/3    3 is due to the 

n qn/3\«3 

o 

The presence  of the term q    -       ,n 

need!  for distinguishing between the remaining q 

functions and f   .    For this purpose It is  necessary t 
$ '   " 0 
>aF, C|    - la /3"\. ^    assemblies«    This proves that 
 Jn Un ^_J 
t   . ■>. q    - I" o/S 1*1« ruin       ^   n      L  -tx    .J p     (_ -, 

It new remains  to shav that tßln    •'*•    qn -  Uf/^J * l' 

For thin  purpose we construct  a test of length q^ - [qn/3J* 

■* l'.    The construction and the  proof will he carried oat 

by  induction with respect ton.    To facilitate  further 

considerations ve formulate the property of the test ?n 

(see Ta-ue  9)  in the following manner« 

1. ««=(i, .... ij,«} = (001... i)c;r„. 

2. From each box ( {starting with the second),, 

T contains at least one assembly o( J^, where i^ < L 

■s  o) Tf r - "'K t'hAn the test T contains 

t^ p^serhlje^; <xn - and <n. and ^^these assemblies the 

functions fh ,, n, I* T 0, and f^ t are distinguishable, 

b) If in « 3k * 1, then. ö£ g 6 Tn and only the 

function fh -, A is determined ^^the assembly«, (the 
ii"x j o lL 

other functions are determined   the remaining assemblies}. 

c) tf o - "Vk * 2, then the test T contains^ 

assemblies <*£_2> *£..x, and * *, and.-^the assemblies 
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An       end ^n one determiner, only the functions f * ? 
n-1     n u~e- 5 w 

"~h and f - n. 

The first step in the induction if for n = 3 

(o. - "W X). Fron Table 9 it in easy to er tätlich ihni 

the set 

7\,= {*'\ a1,, *i, *?,} 

1? a test.  It is easy to verify that ?„ has properties 

1, 2, and 3b). 

Anrufe that the tents ?y   ,.., T^ (n ^ 3) with 

properties 1—3 inclusive have already heen constructed* 

we shall shov? hcv; tc construct the te«t T^ According 

to the different residues obtained by dividing q^^ by 

~ * 3» we consider three cases. 

~*  When estimating the lower bound (see p. ?l£ /of 

source?) we have seen that the 

consideration depends on the residue obtained by 

dividing q by 3. 

3) a   - 3k. VJe put 
hi-1 

T  — T      — a""! -O s1'  -4- ai! 
■1  i   I. 

From this we see that T^  differs from T^ by the 

assemblies from bores n - 1 and n. We consider part of 

Table 9 corresponding to these bores (Table 9a). 

?¥ Cf 



Table 9a 

• ' * /«.~8,0 f -2,0 1T          \ if. - I» o I •   ■   * -3,t f'n ~%l 
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- • ♦ 1   1        -"I 
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• 
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t                               t 
1          *   •   • 

1                  i            1 
1 

It Is clear from Table 9 (see p. 31? &i  source/) 

th^t   'f 
? 
D6ifit? a  cor .t  for the network     Jf      -^ n_2, 

distinguishes  conpletelv the functions  f-    ,   «..,  f'A „  ,. 00      n~^,u 

id I ... 
,h 

C.if.U  J. ~ ' , .... f~ , n, considered as fault functions for Jl'   - n-l,iT 

the network "X   , , and bv the induction assumption, u n,n-i' 

the functions f^«.^ o» fn-2 0 and fn-2.] are comPletely 
n-1 determined***^» the assemblies o( "^ and &(",*%. It is .   n-2 n-i 

obvious that W$ the assemblies   !^n™i? ^ ^ 0? °^ L)  arifi 
n~^   n-^   fj-i 

determine completely the 

h     „h     -., .«h 
o( n (see Table 9a) 

n 

functions fjj^o» f2-2,0» f
n-l,0» 

fri-2,l and rn-l,l* 

?.* 7 «/  ***«•» 



It is clear that T has properties 1 and 2. In. fact, 
n 

property 1 is satisfied In a trivial manner. Since 

d'n"}  and c< n  _ £    T , and since T. coincides with 
n-2     n-2 <--  n? n 

T , ön the bores 1 < n - 1, whereas for T 1 property 
J*)"*l £J.~X 

2 Is satisfied, then T has property 2. It is seen 

from Table 9 that   the set Tft, which satisfies 

requlrements 1 and 2, the fault» in the vertical contacts 

completely localized» Finally, if we have^T 

identically 0? then the network is in working order.        ( 

We have proved thus that T is a tent. Since a    = 3k * 2, 
n ■ . 

it is necessary to establish $*T Tr> also has property 3c 
h 

It follows from Table 9a that the functions f' -. n? , n~.^ >u 
fb  n , ,   and  fh -,   A are determined/^'the assemblies 
n-^jx' n~i,u 

04 nZo afid ot*n-?» stalle the functions fn„2,0 
finä  fn-l,0 

are determined/•<*$«the assemblies <*   V,   and  o( ^.    The 

remaining functions are not distinguishable,**»»these 

assemblies.    Thus, 3c does take place. 

b)    a        : 3k ♦ 1,    In this case we ^ä^^tA^n^-^ 
n~I 

Here, too, T' differs from T ~, in the assemblies from „_ »   7 n n**x 
boxes n - 1 and n. Using the fact that T^ is a test 

for y  -  o with properties 1—3b, and alsoWty the 9  n«-l?n«2 ^ 
fulfillment of properties 1 and 2 for Tfi ? 

we shall prove, analogously as in the item "a," that 
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I    is  a test  for the network  X'     tt  , .    Since q    s 3k 4 

3 ;. 3(jc 4 i)?  it is necessary to verify the fulfill- 

ment  of item 3a.    From the definition  of T^   if 

follows   that T      — j^n"f determines  all the functions 
n-1        n-i 

(corresponding  to the network   V     0      , )» the 

only possible exception bring f^2 0«     It  is easy to 

see, however,   that/^^the assemblies  ^ ^-1 an<5 °^ n 

the functions  fj;_2)0!  f£_1|0,  aad  f^X)1 are  completely 

distinguishable.    All the remaining functions  coincide 

.^these  assemblies.    This proves  the fulfillment  of 

item 3a, 

c)     q        s 3k 4 2,    Vie put 

nbv^ouslv, T has nronerty 1. Since T corresponds ulth 

T   on the boxes £ < n-1, and since T   fiulfills 

reoujreroent 2, then, considering that d, n~l  ana 4^-2  ^ TnJ 

we conclude that T( has property 2. Using the fact that 

1 _ is a test for Y 0  and that T has properties 
n~l " n-.Ljfi«-^ n 

1 and 2, let us prove, as in item "a," that TR is a 

tp^t for the network f   ,• Since q = 3k * ^ - — *■   - " n ?n-.L        n 

I 3(k'+ 1) * 1, it remains to verify the fulfillment 

of item 3b. In fact, by the induction assumption, 

T  — Otn~l—.övn"J    determine- ail the functions 
n-1   n-*<£   n-i • 

Ph '     *<h     fh      fn 
v      „v 

f0C? "•' fA-V,0» f015 #9M rn-?-,l» "00* *"5 An-1,0; 



«h      , *h 
arid the 1unctions f , . and f11 ^ ,s are distinguished -*"** n-2,0 

the  assemblies c* ^ and   ^I^    I* is  clear that tho 

functions  f*  ,  „,   f*  o  o'   anö  fr~'M  arG  fully ^^nair^d 

^ttthe  assemblies ckn      and  ot^, uMcfc  are added to 
f'" * *» *"] 

,T in place of the assemblies   e< £~g and   *n-l*    Flrjally> 

the  function fjBl 0 is determined AJ% the assembly <X,n. 

Thus,  lteir, 3b is  satisfied  for T  . 

q    - /3    +" 1 • ln~l 

<?«... 1 -i :> 

T+- MV rr.roain*  *o verify that  T    har.  E length 

P        /-/\    i     1 Tn     f-ifif t -    '■■*•    S    ^    -   \   *+/i   1    +     1    = 

in = qn -   jo-n^.i      1" '    3  " '      L     J 

-  ^   ~    q0/3     +  1.     Let  us  put   t^-,   = qn-1  ■ _ 

We  shall  show  that  tn  s  qn - (\/3] +  1*    For  thl 

purpose vie consider three cases: 
a) (?,.,=3A-, 

3 

(">-..• I" 2 "l I. 

-•!■ t 

This completes the proof of the theorem. It is 

necessary to indicate hero that the theorem net only 

establishes the existence of tests with different 

properties, but also Rives a very effective method of 

fsr 



their construction^ nhleh does not require the scanning 

of    all the subsets of the sets of n-term assemblies* 

1?    Test fora Networkthat Realizes a Lihear 

Function 

The function Cf> (T-,, y^, .... x ) of algebraic 

los:le is called linear,* if the following representation 

takes place 

<I»(j-„ :r,v  . , ., x,} = .-Vf A-Vf . . . -f- 'V* (mod 2)' 

Knowing the network realisation of  the  function 

%(xlt .r2, . . ., aB) = n -f I ■-}- xt + *8-f, . . -f .rB (mod 2), 

it  ifi  easy to obtain a network realisation of  any  linear 

function, which depends on more  than n arguments.     It 

is  known [l] that   (J>    (^ ,  x   ,   ...,  xn>  can  be  realized 

by means  of  the  network    $1^   (Fig.  29).    We  see  that 

this network is raade up of blocks  of the  form shown in 

Fig.  30». 

* For a linear function one encounters  also in 
ft' /! 

In the present section we shall give a method of 

constructing    test for the network (a.._. We shall 

prove here the following statement. 

M 
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Theorem. For a network #2  realizing a linear 

'.function ^0^v  V '*•' V' " iS possible t0 

ionstruct a single test T of length tn <J 3n - 2. 

Vie note that the closing of contact 1 and the 

slosing of contact 2 of the i-th block (i ^  3) gives 

■ :>ne andjthe same fault function.. In fact, when contact 

1 is closed, then there is a circuit 3~-l~~U connected 

In parallel with contact 2, and this circuit has an. 

idmittance *iF. , i.e.» It produces the came effect a? if 

contact 2  were also closed, and vice versa. It is _ 

5rt.ablir.hed analogously that closing of contact 3 and 

:,he closing of contact U corresponds to one and the same 

Fault function» Furthermore, the  differences in all 

the remaining fault functions will follow from the fact, 

mich is about to De estaoiibhea» that all the indicated 

■faults are localized. 

•*•*- ft-/ 
Fig. 29 

8t *  Fig. 30 
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We prove the theorem by Induction with respect to 

n. In the particular case n s 2, the set T^ a ^.(00), 

(01), (10), (11)} is at test (trivial;; see Introduction). 

In this case the following faults cannot "be distinguished 

opening of contact x_ and opening of contact y^ 

X* and -2 

closing of contact .x« and cloning; of contact *2 

5t_ and 
X 2 

Let n s 3 (first step of the induction). It is 

seen, from Table 10 of the fault functions of network (jl^ 

that ^ = {(001), (Oil), (101), (111), (000), (010), 

(100) \  is a test that distinguishes all the faults 

contained, in the table* 

We introduce the notation 6! s ((o,-l)), where 

&  = (S1, Sq, ...» S ), I.e., ds s (S-p ö2, ..., 

$  , 1). If A is the set of assemblies S , then 
n c, 
A ' = C( ^ 5 1)) is the set of assemblies £J s ((  ? !))■ 

We put 

for* n. "* ©von 

for n odd 

a„=(0, 0, 0, . .., 0), 

ß.=r(1, 1,0, .... 0), 
I 7,:«(<>, 1, Ö, .... 0); 

«,.-■(<>. 1, 0, .... 0), 
&,--=: (1, 0,0, .... 0), 

7, -(", 0, 0, ...t 0). 

/<?/ 
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Fig* 31 

K. 
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>; 
\ 

V 

Fig, 32 

X 
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A, \ 

\/   V 
P JLßj a J ,7 

Second Step o f Induction« Let there be constructed 

for the networks CV .-where k < n, and let the tests J',_ 
. rr, *  x.  x -2 k „ o  w» define length of the test l"k DO ^ £ 3* - '-• • rt~ 

/"„■■■-- Wju)-  *))» V $*■■  ?*•• 

It is clear that ty   «k .1 (n - 1) - <=■ * 3 - ->«■  *-• — 

uc prove that Tp is a test. We note that from the 

definition of Tn it follows that the test contains the 

aspemhii.es ^ = (0, 1, 1, ..., D ^d S
2 

Z   (1? °» X» 

11 \'ip  f-^rst indicate how to detect the fault in 
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the n-th block (if such exists). Since the network ft^, 

assumes'\JUi the assemblies &    and. £v  the form shown 

respectively in the left and the right parts of Fig. 31? 

we have for ü5()( &   )  ^ 42 ( ^) a phort circuit in 

the 1-st or in the 2-nd block. Therefore in the 1-st 

and. 2-nd blocks there is no short circuit if $Q(£- ) r 

-   Ci> (  £ ). In the case when there is no short circuit 

in the 1-st arid 2-nä blocks, a further investigation is 

necessary« Let us consider further the assemblies 

s (0, AJ , 0, ..., 0, 1) and ^a  = (0> ^ » °» •••» 0)• 
$ n-1 
It Is obvious that the       appearance of the network 

' 1-, 
.11/^' these assemblies depends on the evenness of n:. 

"When n is even it has the form shown in Fig« 32, and 

when n is odd it has the form shown in Fig. 33. Analyzing 

these cases we reach the conclusion that one of the 

contacts 1 or 2 (in the n-th block) is shortcicuited 

if "$ .( y '  ) = 0 and "3* ( y ) = 1, and that one of 

the contacts 3 or V is shortcircuited if <J>0( Jf^) - 
x 

&nd $0( Y^) e 0, If, however, $Q( ^) = £ ( tfn>, 

then there is no closing in the n-th block. 

It now remains to provide a prescription for 

detecting open circuits in the n-th block. For this 

purpose we examine the network vt^ on the assemblies 

cv! . (o , <* »  , P> •   (Fig. 3^). Since the networks 
n' \ n'  n-l' " n-1     ' 

/ov- 



"a" and ,8c" coincide only in the link x-, then when 

fr ( oC ) -^- 2> (o<f  )* the contact x, cannot he open; 
"0  n  ' ^- o  n-1 3. 
analogously, from the fact that the networks "b" and »d» 

coincide only, on the link y., , we conclude that -when 

"S:   ( ft ) T£ ct> (ß *  ) the contact r cannot be open. 
o; \'n    : 0 ! n-1 1 

Next, comparing networks "a" and "d" with "bH and. "eM 

respectively, ve see that the foregoing networks co- 

incide pairwlse in all olocks^with the exception of the 

1-st and the n-th# From this we reach the conclusion 

that when 7P (<* ) **+ 9^ ((3 '  ) or respectively 
-'On     — 0 * n-1 

3> ( fi> ) * 33'  ( o(!  ), there is an open circuit In 
"""0 In  '  ^- 0  n-1 
the 1-st or in the n-th block» Since we have Just 

provided a      prescription for establishing    an 

open circuit In the first block, the open 

circuit in the n-th block is detected| with this? if 

$ (^ ) Z  0, then contact 3 is open, if "$, Aß>   3 = ° 
-* On n 

then contact !+ is open, if <Ph. (o<' .) s 0, then -^ Ü  n~JL. 
contact 2 is open» and if ^ A & ? n) = 0, then contact 

-~ 0 -i n-1 
1 is open. This completes the analysis of the n-th 

block» If the n-th block is in working order, we put 

v ~ 1 and the network vl   goes into $1-  . With this5 "n 'h " n»x 
there is a mutually unique correspondence between the 

assemblies from ((T , 15 1)) and the assemblies from 

T  . Since, by the Induction assumption, T   is a 
n-1    ^ a~"x 

test for "   . we can monitor the network ^l , 
n-1' u ■*■ 



completely, i.e., ve can monitor all blocks from 1 to 

n - 1 inclusive. If it is found that the subnetwork 

6\s    . is in working order, this means that the entire 
n-1 

network Cl    is in working order. This proves the theorem 

completely. 

In conclusion, we get tests for n » \  and n = $t 

r4=r{(00ii), (Otii), (ion), (nil), (orjot), (Oioi), (iooi>, <oooo), . 
(0100), (HOC))}, 

rs={(00iii). (oiiii)» (ioui). (inn), (oooii), (Oioii), (iooii)t (ooooi); 
(01001), (11001), (00000), (01000), (10000)), 

It is easy to verify that the algorithm proposed 

above for the construction of tests of the network ^, 

gives for n s 3, *+> and 5 minimal tests. 

8A    Test for the Comparison Network 

Of particular interest is the comparison network, 

i.e., a network which realizes the function 

l^*ji<B, t  1 -f-rf A 4* B> 

HA'^^Oj* A>B. 

Thus, let A = anari^..0a1 and B s *nVl*"h *
e tvo '"-** 

binary numbers, and then 

/■(«■.....,<vA» • • ..^^«AV^AVßAir'K-, «IA-I bi)^ 
=äAV(«AVyr,(v, «»; K~i bi)- 

( 

/tf6 



This function can be realized by the network shown in 

Fig. 35.* Thus, the comparison network 61    consists of 

the (n - l)~th block of the form shewn In Fig* 36? and 

one block shown in Fig» 37« With this, the blocks are 

Joined in the .manner as shown in Fig» 38* The network 

given contains kn - 2  contacts« 

The next problem is the construction of a minimal 

single test for the comparison network» Here 

we become acquainted with another use of the block 

structure of the network for the construction of a test* 

The method proposed consists of constructing the test 

for the entire network of tests for Individual blocks <> 

Thus, the block nature of the network is used in an 

entirely different manner than was done in Sec, 7? "Where 

the block structure v/as taken into account essentially 

in the law of construction of the test, and also in the 

inductive proof» However, such a law of construction 

of the test was to a considerable extent, so to speak, 

"guessed atM, more accurately, so to speak, "noted"? 

here, to be sure in embryonic form$ vie propose a 

principle of constructing tests for block networks« 

Theorem. The minimal single test T for a 
n 

comparison network $r has a length t s 2n + *+(u > 2).** 
n ii 

Proof. We make up tables of functions of faults 

of the 1-st block (Table 11), and also of the i-th block 

/el- 
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(1 <    i <~r   n) (Table 12), considered as a multi-terminal 

network with one input and two outputs« For the 1-th 

block, the values of the functions are written in decimal 

system, starting with dual notation scii-3_* 

_____»_-^~^—-t—~£ere is simpler than that 

constructed in reference /3/ by G. N. Povarov by the 

cascade method* 

*# Obviously, tn • 3* t? * 7« i 

The i-th block is connected in the network in the 

. Wrt OQ  WT-AW tbl«? "Wf» have the following! manner shown in Fig« o?® rrom \u±a  *•- n-*.~ 

a) If cs  , s 0, for example, ajL « 1» "^ * 0, then 

all the circuits passing through subnetwork iß-,^are open, 

and therefore the operation of the subnetwork U  cannot 

be verified with such assemblies, 

b) If s ■ 1 (in the i-th block), then a± = 0, 

i  +v_ «nW-vr-k % is blocked* and therefore under 

our conditions the operation of subnetwork &   also cannot 

be verified» ,, 

c) No matter what the state of subnetwork lr  » 

we cannot distinguish between the two states of the 

remaining part of the network, namely when s - 1, c^ = 0, 

« - 1 c , r 1 (i.e.. ve do not distinguish between the 
b *" x?  i-1 ' 

/öf 
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values of the functions 2 and 3), The remaining com- 

binations of the states sc, , are pairwl'se distinguish- 

able. Therefore a table of fault functions .for the 1-th 

block connected in the net-work can be «ritten iri the 

. form of Table 13• 
i 

Table 11 shows that the minimal test for the first 

block consists of three assemblies (0S 0), (1, 0), and 

(1, l)j from Tables 12 anö' 13 we obtain"one and the same 

minimal test for the 1-th block (i > 1.5, consisting of 

all four possible assemblies. One must note here, 

however, that in the construction of.a test for the i-th 

block (i J>   1), ve begin from the fact that on the 

assemblies (0, 0) and (1, X) we used essentially informa- 

tion on the outputs s and c. _, whereas in the verl- 

fication of the i-th block, connected in the general 

network, we obtain information only from the output s* 

By virtue of this circumstance» we need for the veri- 

fication of the i-th block not h  assemblies, but more 

— 6 assemblies (since 3 differs from 0, and also M 

differs from 0 only on the assembly (0, 0); k differs 

0 and also 2* differs from O.only on the assembly 
is. ' 

(X, 1)$ then the assemblies (0, 0), Cl, 1) must be 

taken both in the closed state and in the open state 

of the subset Jr )• For convenience we shall write 

/// 
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the assemblies (^ • ••» **^   ^n» •••» |6i} in the fOMl 

/*<> "' » *. \     FroTn ltems a) and b) it follows 

that «ith the aid of the assemblies ^ ^_ a^v J 

lone cannot monitor 'blocks i-1, i-2, ..., 1. 

Since for each i (1 > D there is at least one 

assembly vith o^ r 1 and (*», - 0, and at least one 

assembly with <* < * 0 and (%± - 1, then the minimal test 

T must include the assemblies 
n 

From the foregoing arguments and from itemV it follows 

that to monitor the second block it is necessary that 

there be present assemblies vitn ^2       ; 2   * 

A    -i  i , +-U »H-I-VI Co/   of' ) r (1* 0) and with fK ^ a p ,.. = 1} both wli-n t<* ^s * i'   "* % * 

f 1  '(1 ) .J. n . o')» Therefore the test T must 

contain the assemblies 

Y"' 

U' • * "»    '3" 

"='V». «;. o, sj' J ~tr 5;', 1. si 

vhere ^VL 

(4, ^)^{h 0) H («;, ft)«?*«(I» 0). 
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Let-us consider in greater detail the 1-st and 2-nd 

blocks of the network (Fig. l+O).  It is obvious that from 

among the foregoing assemblies only assemblies £' and ,-n 

can participate in the analysis of opening of uo'ot<,ci.3 

2 and k  of the 2-nd block and contacts 1 and 2  of the 

1-st block. Since the case that the network 

conducts both with assembly h l  and with assembly c" 

Is possible with the network in working condition, one 

csn recognize with the two assemblies o' and c" at the 

most three faults (the fact that there are no coinciding 

fault functions for open circuits, follows from what 

will be given below). .Thus, the test T^ should contain 

at leapt one more assembly t  , different from those 

previously constructed.  In the analysis of open circuits 

in the test, as we have seen, there should be present 

assemblies of the form fl», ^ " and o< (i ^ 2). Of 

these5 only four are in the control of the first three 

blocks 

0 
\ 

1 .!* 

„■it i>;     \-,„. • • • 

i..,» 

o/' ' = -/; •.:;, MH' 

, r;.  . . ., 'J-\*    '. • ■ • \ 
.3 \ 

.. *?. 0,...)' '"""U, .... a«, 0, ...I 

//*/• 



. .«ijnjwpiu.[-.vmm 

"'Vie shall show that for any choice of value? for | ' ? # ", 

and »!' we cannot completely distinguish all the short- 

-circuit faults for the 2-nd and the 3-rd blocks. Right; 

e^epc %re ■nossible here» 
2 

From item c it follows that when ^ = ^ = -^ 

the foregoing assemblies do not make it possible to 

monitor completely the third block. Thus, It remains to 

consider only those cases, when at least one of the 

Pt^ber f«. X % &2  *s eQual to ° aad at least one ±B 
y 3  0 ^    *} 

equal to 1«, 

if o(2 ^- Y * r '"i  "i  then with the fores°ins 

' assemblies, when aif^-O, we"cannot distinguish short 

circuits of the 2-nd contact of the 2-nd block and the 

Vrd contact of the 3-rd block, and ^ihen ^ J "■ 1 ^ 

cannot distinguish open circuits of the 2~nd contact of 

the 2-nd block ana the *+-th contact of the 3~rd block. 

It remains to analyze the case when ^ *- y £. Let 

hlj denote that value of ^, or y«, vhich is'dlfferent 

from c<?e It is clear that'with the assembly 
3 

-.,!, ->V       "V        \\ 

"''  I ..,;■•      •-?'  <"/- 0 I 

the following pairs of faults cannot be distinguished 

from each others 

//£*" 



r 1)    when 1 £ -   jjJrO« closing of the 3~rd 
~> 

contacts of the 2-nd and the 3~rd blocks; 

P - n v P 2) vhen "tf J, = °J tf ? c x ~ closing of the 3-Ö 

contact of the 2-nd block and    closing of the l+-th 

s^ contact of the 3~rd block; 

3) vhen tf jjj s 1, |f? s 0,-- closing of the Wfch 

contact of the 2-nd block and closing of the 3-rd contact 

of the 3~rd block; 

k)    when ]£ 5 = V P e 1 — closing of the H-th 

contacts of the 2-nd and 3-rd blocks, and the correspond- 

ing faults are not monitored at all by the remaining 

tvo assemblies. 

We have thus shown that in the case of closing it 

is necessary, in addition to the foregoing ones«, to have 

at least one more assembly. Thus 

/„ > 2 (n -- 1) -f 4 ~f- 2 = 2« -f 4. 

Table Ik 

' CJapa 
Type of 

'V 

Faults 

in tb.® 2a& contact 
in the 3x*cl contact 
in the 1st or 4th contact 

i 

] 

0 

n 
i 

i 

— f/l 
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83 

ß4 i i 

Rtt-f 

ß'1 

\n 



'■5 

+■■ - 

Table 17 

i   — 
if c; ;- 

+s ■: 

'; 
!fV '""..1 j 

™'i '    1          i 
>rj 

43 : 
•p • 

i 
1 

tr,f """' 
& ' 
•H -  ... '. 
«5 1 ' 
!0 j 
O i "Ö  : I P-,      f 

l 
1 ^d T-...                1 

h ':                    '. j 
ff\ i 

i 1 

i i a :  i 
: CJ ! 

i'-p'i 
1   CO i *■-, 

IHJ »,-.,«,—»._-. 
Iß   ! 

IS 
A! . 1   .0 
o ; a u 
O   ! o  to 

PP   i 
Ü   +' 

I     c- 

' — ' : 

I     r™ " 
I !    I I .-! rt -r j ■ *, c, - 

- //i 



It now remains to prove the inverse.    For this we 

construct a test of length 2n 4- h.    We put* 

*        | 

U, ,of..., o, o\ 

/!,..., 1, i \     e 

.1, .... *. 0/f  " 

70,...f 0, 1,0\ 
A0,..., 0, 1,0/' 

--Ao,...,o,i,i.o,...,o/\ 
-,/1 i-o, IM i\   (i = lf ...,„)). 

0,  i 
0. 0 

T~~~ThZ asterisk denotes the i-th column. 

Table 18 

f) j   B   1-M  OilOKO 
Qf \ BO 2-is KOHtaKTO i > 2 G.ioKa 

B  <?-M  KOHTaKTC   i > 2  CflOKU 
B   i-M  EM  ^-M  JvOHTUKTe  l>2 6.101« 

KEY? 1) in the 1st block; 2) in the 2nd contact of the 
bloc i > 2; 3) in the 3rd contact of the block 1^2; 4} 
In the 1st and 4th contact of the block i s»2. 
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Table 19 

2nd possibility / (i') *» /if) = 0 

Table 20 
3rd possibility / (f') =»l. f (T") -» 0 

i 

4 
(M 

H 
fi> 

t 
»     •     • 

H 
fit 

1 
1 

a 

fi< 

i 

fl2 1 0 . . . 0         0 

«8 0 1 ■     ■     * 0 0 

1 

a" 

. . «I« . . 
0 0 , . . 1 0 

0 
  

0 . . . 0 1 

H 
. . . 

fit 

7 
«. 

fit 

3 1 

al 1 0 »      •      * 0 0 

s* 0 1 •     •     • 0 0 

a»~2 0 0 -»     •     * 1 0 

0          0 *      •      • 0 1 
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It is stated that T Is a test.  Let us analyze separately 

three cases i 

1, The circuit does not conduct -with at least one 

of the i f^<; c.l p.-rp j-j 
J   U      )  &'• j  O.UU  VJ  v. X  — *- 5  * • * nl 

In Table 3.1+, depending on the states of the network with 

the assemblies >; ' and % n  ve indicate several possibili- 

For further localisation of the fault we nake use 

of Tables 15—17* This completes the analysis of faults 

In the case of an open circuit. 

II. At least with one of the assemblies y '\   Y", 
u     ■    u 

me   CA.*   (i ss 1,   . ,o;  n)  the  circuit conducts»    The 

possibilities that ate present here are Indicated  in 

TsMe 18.    With the aid of Tables  19—21 we  localize 

the fault in blocks  i  ^    2S    These tables make it 

possible to complete the analysis of the faults in the 

case of a closed  circuit0 

III*    The network conducts -with  all the   assemblies 

0   ? 2,   .,«« n) -   snH  -?+' * 5   ,,e5 n;,  ana it is open 
i 

VM,  £ ,   and   i'i"   (i  s 

with all the assemblies   ^«,   Y %  and c*1   (i ~ 1,   ..., n), 

In this  case the network is In working order.    This 

proves  the theorem completely. 

.JL. Fig.   40 



9. Ordered and .Tentative Tests. 

Thus far we have considered principally the 

question of the procedure for    constructing tests, 

without taking into account the specific nature of their 

utilization. It must be indicated here that in the 

monitoring of a network, we, first of all, test the 

assemblies in a definite order, and secondly, as a 

re?alt of each test we obtain information concerning the 

st,r.,e of the network. 

An essential characteristic of a test is the-"time 

n^e.-iRary to monitor the network. In  this connection, 

v■'■■■ri.l:■:■■ ilixv  sißniJ':':uv^:.e attaches to the question of the 

instruction <;,.;: a. :;v.^i;'::sl test, and also ■"/lie question 

,:T  t;vs extent to vhik-h the test constructed deviates 

:"."'■• e.-v a minimal one« However, as was indicated earlier 

(S.:HV Sec, 2), the verification time can be reduced also 

i::  a different n;. savior s namely by rational utilisation 

of the test already constructed, 

Definition. An ordered test is the following 

system of verifying the networks 

1» The test is broken down, into groups, written 

out in a definite order (individual groups may contain 

also one element each). 

2, After passing through each group of assemblies, 

/^a- 



»information is fixed regarding the state of the network. 

3. If this information is sufficient to detect a 

fault, then further tests arc discontinued, and in the 

on^oslie case, one proceeds to the next group* 

It is seen even with simple examples that with such 

a system of running through the test, we can 

ohlain the necessary information concerning the state of 

the network in individual cases (to detect a fault, for 

example), by running through only part of the entire test. 

An ordered test is characterized hy a mathematical 

expectation of the length of the used part of the test« 

It i;; clear that corresponding to different arrangements 

of the group vill be different values of mathematical 

expectations. It is therefore natural to strive for 

such an arrangement of the group, at which the minimum 

mathematical'expectation is obtaineda 

Vfhen obtaining intermediate information it may 

turn out that in the remaining part of the test, the 

remaining assemblies -will be superfluous, i«ee? that 

running through these assemblies does not add to the 

information concerning the network. Vie shall analyze 

this circumstance in greater detail. For this purpose 

we introduce several symbols and definitions* 

Assume that for a network Gl  there is fixed a 

set of fault functions Tflfl and a set # of pairs of 



fault functions in the sense of Sec. 20 We denote by TQ 

a certain set of assemblies. It is obvious that as a 

result of running through the assemblies T^ vte obtain 

information I, concerning the network ÖU- (i r 1, 2, ..., 
1 

s )• The information I. can be characterized by the 
0 1 

function d?,(e), vhich assumes values 1 or 0 on the 

assembly e^ I, depending on whether or not the in- 

vestigated network conducts with the assembly e. Vie note 

that the functions f^e) are specified only on the set 

T   We denote by 1ttT    the sot of such functions 
0* xi r 

f.Ce) fromm, that f.(e) S f±(e)  for e £ TQ. 

This definition of the set Bj can be decoded in the 

. following manner. We arrange in some manner the assemblies 

from the set TQ « (e«, e«, ...). Prom the table of the 

fault functions ^l ve pick out those functions, vhich 

assume that the assembly e» a value ^(eO. From the 

resultant set we pick out further those functions, vhich 

assume a value ^(e") with the assembly e", etc0 

Running through all the assemblies of the set T(), ve 

obviously obtain III^ . 

We denote by n: ^
e set oi  those palrs (V 1k) 

from. 71, for vhich f. and ffc £ *ttl1±.    I*t h±  be the 

test corresponding to the set of the fault functions ¥1^ 

and to the set of the pairs of fault functions ni± 

(TT may prove to be empty). 
J-i 



Definition» A Tentative test 1 y 
called 

the following system for testing a network. 

i       q>,p *,?+  T fiTes the information x. u. 
/.• _ i  p 

* e * ^   »-■' ./-i !■*' 

obtained, 2* Depending on the information. X.. 

further verification of the network is made with the aid 

03 tesi i.T. • 

The  tentative tost is shown schematically in Fig, 

Vi  From the definition of the tentative test m 

>ws directly that the set of assemblies T • {TQ, 1 

v is a test in the ordinary sense. Obviously, 

I0.L.L0-W li5 

the construction given can be repeated many times« 

p-eiw if r-.o  infomation 1, does not give a complete 

ansvier concerning the state of the network, we take the 

■set of as-embjies T*, where fj ' TQ : No We then obtain 

sunotementary information, etc., generally speaking until 

we obtain complete information concerning the state of 

the network. In  this case, the tentative test is 

represented in the form of a "tree" (Fig. *+2). here the 

rci, of T  (see definition) is played by the tree. In 

particular, it may be found that each of the sets i^ 

consists of exactly one element. 

For simplicity, vie confine ourselves to an 

evanrinatlon of the simplest tentative test, i.e, the 

case shown in Fig. **!• 

1)S 



Defirdtiorio     The  length  of   a  tentative  tent  T^.  is 

called the  quantity  t,   ~ max(t,., 4 tT.) = tr, 4 ma: V      '-T.   1 •!-i 

1 where tr,   is  the  length of the t.os+ 'T 

3- J-i 
It follow:- fror the definition thai it i;- pcpsil-lo 

to construct ?■  tentative tent T,, of length y 

For tills purpose it. ir. enough to take on Tr the subset of 

T  , aed to take for T~  the mlninal tost contained in 
rrn.rr -hi 

T .  - I,,«  It is obvious that the fom of the tentative 
rain   0 

test depends essentially on the choice of the set T . 

It reraains unclear under what cases can one con- 

struct a tentative tost T such that t  < t . .  The 

question also arises of whether there exist for any 

tnotetive test T of length t.r   ;<■    t...  such a value of 
v        y    iiijji 

i, at which t0 4 tj. < tmln. 

VJe give an example of the construction of a 

tentative test, 

Example. Tentative Test for the Comparison Network. 

Here we start out with the comparison network considered 

in 3ec 8. 

He choose for T, the set of assemblies \   "■■■ ' , ^ " 5 
0 i 

);' , and 'i "  , where again 

i 

/<>£■ 



1i ~ 
i(), .... 0,0/f 

„■ /l, .... M\ 
T =rii, .... W' 

. From the scheme and the tables vo have the followingt 

1) If the network'is opeacirculted vlth the 

assembly * », then either the- 1-st or Mh contact of 

the i-th block (i >    2) are opencireuited, or case the 

1-st contact of the 1-st block* 

2} If the network is open-circuited vlth assembly 

J«, then the 2-nd contact of the 1-th block (i &     D 

is open-circuited» 

3) If the network is , .  short »-circuited with 

the assembly % ', then either the 3-rd contact of the 

i-th block (i > 2) is short circuited or one of the 

contacts of the 1-st block is short-circuited, 

if) If the network is fehort circuited uith the 

assembly ^ ", then, either the 1-st or if-th contacts of 

the 1-th block (1 > 2) are short circuited, or else 

one of the contacts of the 1-at block« As a result of 

running through the assemblies TQ, ve obtain one of the 

*.  T •  T  T  T  T   These 
possible informations IQ» ±v  i2» -»-3» \» V 

informations are characterized by Table 22* 



Each of the informations describes the state of the 

network, namely: I denotes that either the network is 

in working order or else there is a short circuit in the 

2-nd contact of the i-th block (i $?-  2) or an open 

circuit in the 3-rd contact of the i-th block (i ->  2); 

I. denotes that the open circuit is either in the 1-st or 

in the Wfch contact of the i-th block (i > 2), or in 

the 1-st contact of the 1-st block; I2 denotes that the 

open circuit is in the 2-nd contact of the i-th block 

(i £• 1); In denotes a short circuit in the 1-st block; 

I, denotes a short circuit in the 3-rd contact of the 

i-th block (i ^ 2); I- denotes a short circuit either 

in the 1-st or in the k-th  contact of the i-th block 

(i ^ 2). 

< 

Table 22 

Assemblies to 'l h h I* h 

V i 0 1 1 1 I 

V i 1 0 1 1 1 

i 0 0 0 1 1 0 

r 0 0 0 1 0 1 

i 
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Now, to complete the construction of the tentative 

test, it remains to write out the tests TI#: 

T f .,2  „3        „«. f,'2  OS 

7\2r={S, a*, <x\ .... er.-'}, 

jp/j, = A7 — empty set 
1 h — UJ '   $' '   • • •»   lJ       / ♦ 

7\ — 'V   82 h") 

The fact that the listed sets Tj , T^, Tj2, Tj^, TI)+, T-^ 

are tests, following directly from the arguments given in 

Sec. 8e 

We note that a tentative test essentially represents 

a scheme for proving that the set ^TQ, Tj , ..., Tj  | 

is a (unconditional)' test. This note makes it possible to 

extract in many cases the construction of 

the conditional test from the proof of the test, 

. To describe a conditional test we consider the 

mathematical expectation of the length t = tQ * t^ of 

the employed portion of the conditional test. This 

quantity is proportional to the average time of monitor- 

ing the network. 

The introduced probability characteristic is 

meaningful if it is established that the faults appear 

with a definite frequency. In practice one can always 

consider that this takes place, when we deal with an 

;>f 



adjusted network. In this case one can determine by 

statistical means the probabilities of the appearance of 

various faults. We denote by PC^) the probability that 

in running through TQ we obtain the information 1^ 

iObviously, the sought mathematical expectation can be 

found from the-formula 

/ =r V (/„ -f t1() P (/,-) = !0 + ]£'I, 1* (U 

since t 

2 *</«) = 1. 
.'^i 

We calculate t for the preceding erample. 

Let p be the probability of the network being in 

working order, q . 1 - P the probability that there is a 

single fault in the network - a short circuit or an 

open, contact.* We assume that the probability of all 

the faults are equal to each other, I.e., q/2 0«i - 2). 

We calculate the values of PC^) 

Since t B 2n ♦ 2, then 

-   «      r3      7        *    1 

— 13 0- 



This relation shows that the average length of the 

tentative  test differs substantially from the length of 

the .tentative,  test in the case when q is not very small, 

However, if q is not very small, then the network 

operates with frequent breakdowns and 

consequently needs adjustment. Thus, under normal 

conditions the average length of the tentative test 

deviates little from the length of the tentative test. 

* Consequently, the probability of appearance 01 

faults in more than one contact is 0o 

In the preceding argument the calculation was based 

on the assumption that the tests T-j. are run through 

completely. However, there is no need for running 

through TT completely, if the fault has already been 

localizedo Consequently, it is convenient to consider 

each of the tests TT. as an. ordered test. 

The advantage of the conditional test is parti- 

cularly clearly seen from an examination of the problem 

of finding a single fault for a single binary summator 

network /I/« 

i'M 



We start with the following scheme for add1ftg two 

n«column numbers, specified in binary form 

i Ä«a»-i • • • fl| 

KK.X ... 6, 
'WA^K-I • • * *x 

If we denote by c±  the result of the carry in 

the (i 4 l)~th column, we obtain the following recursion 

formulas 

c,=&i v<-i v *« (^ v 5A .,), i 

where i s 1, 2, ...., n, cQ a 0, c0 = 1, s^ = cn« 

Starting with these relations, it is easy to 

obtain the binary sumnator of interest tc us. This 

network consists of n blocks of three types (Fig. l£). 

The blocks are connected as shown in Fig. M+. 

Thus, the binary swim at or network represents a 

block network. However, unlike the comparison network, 

we have here a more complicated connection between 

blocks. It is therefore quite natural to refine 

further the procedure for setting up tests for the . 

block networks. 

Issumö'(l) that we have a network made up of a 

small number of types of different blocks. We assuirfe 

m 



furthermore (2) that no relay can act on several blocks, 

and that each block is controlled by a small number of 

relays. Finally, we assume (3) that in each type of 

block $  the poles are broken up in an Identical -manner 

into inputs and outputs so that the inputs (or respective- 

ly the outputs) have the separability property (see 

below, p. 3^2 /of source?) and that in the network the 

current always enters into a block which is in -working 

order only through the inputs and leaves the block only 

t h r o u gh t he o ut p u-^, * 

.„_.___,_ ^  order to facili- 

tate the jcalculations,*__ „__„___„_.„, 

In. the Investigation of block diagrams we first 

make up? in. accordance with the network, a table of 

"transfer'1 and "output" numbers, which shows the 

dependence of the states of the output on the states 

of the input in the case when the given block is in 

working order» - This table explains the possible states 

of the Inputs of a given block under the assumption 

that all the remaining blocks are in working order«, 

The next stage is to disregard the connections 

between blocks and to consider each block independent- 

ly as a multi-terminal network. The state of this 

/33 



multi-terminal network is determined by specifying an 

assembly <**, ..., tf£, |^, ...» ;* |> where «X J", ..., 

<y i r,nd f% ? ' ..., M describes respectively the state 
k    ' 1      ■ * ■ 

of the inputs'and the relays of the given block. Obviously 

the state of the outputs of the multi-terminal netwerk 
i      --• i P i 

will determine the value of FC0^, ...} 
tX^> V* x' * "*' 

r}1)* of the function F. Using the general algorithm 

described in Chop. I, we can construct a minimal test* 

These assumptions reduce to the fact that we shall deal 

with a small number of uncomplicated table« of fault 

functions. The latter leads to a relative simplicity of 

calculations. The constructed tests for the blocks 

give the necessary conditions that characterize the test 

for the entire network: namely they indicate what 

cr.nbinat3.onP of significant figures should he encounter- 

d in the assemblies belonging to the test. This makes 

it ^o^ible to construct the base of the test, i.e., 

the set of assemblies containing the mayimum number of 

assemblies and having the following properties, 

Let us take an arbitrary block. Corresponding 

to this block is a group of variables. Each assembly 

i   of the base of the test determines an assembly for 

the considered block, and for this it is necessary to 

join to part ^, ..., ftjj of the assembly K> r 

e 
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c (..., P 15 ...» 0  J, •*•), corresponding to the given p 
i 1 

variables,, the assembly CX r-» ..., <■/J, corresponding to 

the states of the inputs of tho considered blockj when 

the network is in the stet The cons tr^ctou ';o 

i  ."i 3. 
assemblies U>'t !\ ..., rC. P~, ..., j:jj)f should tea 

tent for tho i-th block« 

We shall not give here a 'formal description of the 

construction of the base of the tost relative to a minimal 

tent of each block. We note only that even if it is 

known that tho i-th block is out of order, wo cannot 

always ? generally spooking, deternine -with the aid of 

toe base of the test the character of the fault (see 

Sec* 8, item 3), since the state of the network to 

determined from the states of the inpots of the net- 

work, end the state of the i-th block is determined 

froo the states of the outputs of the block. Thus, 

the base of the test, as a rule, willl not be a tent 

and it raust be broadened to e test. This step 

requires a more rigorous accounting of the character 

of the connections between the blocke. 

Let us consider a block network satisfying 

condition 3. fhis limitation is stronger than the 

requirement that the inputs and the outputs of the 

blocks be separable, i.e, the requirement that the 

admittances between each pair of inputs (outputs) of 

/ ) C- 



each block be identically equal to 0, (see Reference /&?). 

In fact, let each, block consist of one contact, i.e., 

let it have one input and one output, and then in the 

network shown in Fig. h$9  each block is trivially 

separable, but condition (3) is violated for the 

"bridge" block v (Pig. 1+5). Thus, condition (3) imposes 

limitations not only on the properties of the blocks 

jut also on the properties of their connectionsa 

The concept of separability along with other 

limitations was introduced by Shannon /&?  for one 

special case of the junction of multi-terminal networks, 

in order to exclude the presence of admittances from one 

pole to smother, which, leaving the block, again would 

return to It and again leave it (Pig. 1+63» Incidentally, 

for block networks satisfying requirement 3, the 

existence of conducting circuits,* which return to a 

given block (feedback), as showi, for example, in 

Fig» V?, is not excluded« The presence of feedback 

raises difficulties in the investigation of block 

networks« We shall not attempt to offer a general 

theory for such networks, but to eliminate "returning" 

ircults we shall, first narrow down the class of 

admissible block networks. For this purpose ve con- 

sider networks-which represent "series connections'5 of 

/jy. 
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blocks, in. each of which the poles are broken up into 

inputs slid outputs. Wien connected in series, the blocks 

form an ordered aggregate. With this, the network either 

has a single input and several outputs or a single output 

and several inputs, In the former case the input of the 

network can be joined to any input of each block, and the 

outputs of the network can be connected with the outputs 

of the blocks; in the second case the output of the net« 

work can be connected with any output of each block and 

the inputs of the network can be connected with the inputs 

of the blocks. 

»_ —By cot.Juct:Ing circuit is meant here a circuit 

between, arbitrary vertices of the network, for which the . 

admi t tanc e_ is_not_ J£ual__t o_0_id entically.  

In addition, only connections between the outputs 

of a block and the inputs of the next block, or between 

the inputs of a block and the outputs of the preceding 

block, are possible. For the former case the series 

connection of the blocks is shown schematically in Fig. *f8. 

Examples of networks of this type are a network . 

for parity counting, a comparison network, and the 

binary~summator network. 

—- /3> $ -—> 



Let us assume now that there is a fault in the 

i-th block. Obviously, this fault can change the state 

of the outputs not only of the I-th block alone, The 

,   ±, , ,.,. „...^ A a fi^p,  to th?1 fact that as a result 

•of the fault there is a possibility of current flowing 

along new circuits both on the side of the (i * D-th 

block (forward viave) and on the siae <u me si  J-/ ^ 

Mncv (bookvarb wave). It Is clear that if no limitations 

..„„A „-.»■'n'» in a definite direction may are Impose, a wave niovxag in a ^^•••tLl 

in a certain block be "reflected- an* returned in a 

backward direction,, This phenomenon can take place 

. .  „  rj«..,,^ jfn n»two^ks represent*» with multiple reflections. lnaö, in m,iw.j..Ks 

ed by series connection of blocks, feedback can also 

eicist» The occurrence of reflected ^aves makes the 

calculation of the changes in the states of the outputs 

very difficult. However, in the cases considered 

here no ^ave reflection takes place and this allows 

us to examine independently the changes in the states 

of the outputs of the (1 + l)-th5 (i ♦ 2)-th, ... 

blocks due to the influence of the forward wave, and 

changes-of the states of the outputs of the (i - l)-th, 

/.  o\  fh    blocks due to the influence of the 

backward v!ave» 

llc\ 
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*T*    We shall consider below exclusively only those 

networks that satisfy conditions (1) — (3 5 and represent 

a series-connected blocks* The following theorem gives 

a criterion for the absence of reflected waves.'- 

Theorem« There are no reflected waves if a 
I 
''network, representing a series connection of blocks and 

having .properties (3) contains a single fault* 

The proof is almost obvious. 

lots, In networks representing a_seri.es connection 

of blocks, the presence of property (3) is equivalent to 

the presence of separability of the inputs and outputs of 

each block and to the forbiddenness of the connection 

, between one output (input) of a block and several 

inputs (outputs), 

We shall, see later on-that by tracing the waves 

one can chooses the Taasö: for a test and then broaden it 

to a test having sufficiently short length. 

We now show the appearance of the construction of 

a conditional test for a binary summator. 

Since the foregoing theorem holds for a binary- 

-summator network, we are justified In considering the 

effect of the waves Independently* We first investigate 

the effect of the forward wave« Since the construction 

of the test for a binary summator is cumbersome * we 

lj5ha.ll break down this process into stages* j 



r n I. Compilation of a. Table of Transfer and Output 

Numbers. In order to take into account the connections 

between blocks and also in order to clarify the per- 

missible states of the outputs of the faulty block, ve 

I make up a table (sec Table 23) of transfer and output 

numbers for the i-th block (2 <£ i ^ n - 1). It is 

easily seen that the outputs of the faulty block can be 

only in one of tvjo possible states, (0 1) and (I 0). 

We shall use this circumstance in the next step« 

II, Compilation of Tables of Fault Functions. 

Here we start with numbering the contacts as indicated 

in the diagram.". In the ;d lag ram of the n-th block ve 

use a non-through numbering, since this reflects the 

fact that the n-th block is obtained from the i-th 

block (2 Z i C    n - 1) by excluding a series of 

contacts, connected with the output c.  In the fault 

tables 2h  — 26, the states of the inputs are written 

in the form of two-digit binary numbers; the states of 

the outputs are written for the sake of brevity as 

decimal numbers corresponding to the binary numbers 

ciVi <i * 1. 2» — * n - *> and s
n*i°V 

Fr°n 

Table 2k we have fQ ?■  f^, f^ = f^, f^ = f]6, f 1, = f?1, 

and f,  a f  . From the diagram of the 1-st block 

(see Fig. >+3) It is seen that f^ a f^  1^ *  fg? f[+ * f,^, 

I 
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■*f-p  - f   f  a f  . and f\  - f r • 
Is   5fS 3f   9{      M   8? 

By virtue of the symbols used, and also by virtue 

of the structure of the n-th block, the table of fault 

functions for the fc-th block ( Table 265 Is obtained from 

the table of fault functions for the i-th block (Table 2h) 

%y leaving in. the latter the corresponding columns and 

replacing them 2 by 0, 3 by 1, 6 by h,  and 7 by 6 (the 

second binary digit is always 0). From Table 26 ve have 

fx3 . frp f]A » fl6, and tv  s f?I. 

From the foregoing tables 2*f — 26 it is seen that 

certain faults      have become indistinguishable. The 

question arises: .. what can be said relative to the 

: maistinguishability of faults in the entire network? 

" Thuq* let f\  denote a function of the j-th fault of the 

; 1-th block, f0 — a function corresponding to the 

; operation, of the properly-working network,* Since in 

the network under consideration there is no feedback 

(reflection of waves) and since no feedback appears for 

faults of the open-circuit type, it is obvious that *e 

have for the 1-st block 

fv -— /.w >%' — '?" '*' —/s 

for the i-th block (2  4*    i ^ n - 1) 
U   „.... rt   fi   ™. « 

and for the n-th block 

/ */ '/■— 
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    " "Hife'"The" furictions"depend on 2n arguments 

/«-*>•■•> a-s \    t  v;hich assune values 0 and 1; the 

values of the functions themselves are integers from the 

segment I 0, 2.   - 1 J • 

Furthermore, since all the circuits that arise as 

the result of feedback and go to the output r^ of the        { 

1-st block pass through the input of the network, these 

feedbacks provide no new possibilities for monitoring 

either the 1-st or the 2-nd block. Therefore 

'i /6' h /g» /4 — >V 

' It is. seen therefore that the *+-th contact of the 2-nd 

block is superfluous,. 
i     i    i 

We shall show below that f^ = f^ and f^. = f-l6 

when 3 £    1   <   n, and also that      no new 

identifications are produced (all the remaining faults 

will differ). 

It is easy to establish from Tables 2h  -~ 26 

that assemblies 1 — h  are a minimal test (trivial) 

for the verification of the 1-st block, and that 

L. 
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assemblies 2—8 are a minimal test for the verification 

of the 1-th block (2 ^ i ^ n). In fact, the direct 

breakdown (see Chapter I, Sec, 3) shows that the fore- 

going sets are tests, Since assemblies 1 ~~ h in the 

ease of the 1-st block and assemblies 2 --» 8 in. the case 
i 
:of the i-th block (i ^ 2) must enter (Chap. I, Sec. 3, 

Item 3) into any test for the corresponding block, the 

foregoing sets are minimal tests. 

III. Construction of TQ ~ The Base of the Test. 

Now, starting out with tests for the individual blocks 

ana a table of transfer numbers, vie shall attempt to 

construct assemblies that form the set I in such a way, 
0 

that T have the least possible length and that the 
u 

information obtained after running through Tr would 

permit ready:implementation of the conditional test by 

adding in each individual case a small number of assemblies. 

Inasmuch as in the investigated network the 1-st 
not 

block occupies a special position, we shall take into 

account the test for the 1-st block in the construction 

of T . Thus, we shall construct such a set T    that for 
0 u 

any i (2 < i ^ n) the set of assemblies? each of 

which is c. .c". .«*.&., -where c   is the result of 

carry in the i-th column, and ^ t and [6     are the i-th 

columns of the numbers of the set from TQ, forms a test 

for the i-th block. Obviously, this construction can    f 

/^/ 



^*Xea<I to several different versions of TQ*    We take for 

T the set { ex, e2, e^, e^, e^, eß, eA  , whore 

*!  \i... i l)*     "«"""v.... 00/*  e3~'\... 0 1 o t/'  *~ \... 1 0 f (»/» 

The assemblies of the set T are connected with the 

assemblies of the minimal test for the i-th block as 

follows: the assembly e, is constructed starting with 

assemblies 2, e2 is constructed starting with assemblies 3, 

e„ — starting with assemblies li-, 5, el(< -- starting with 

■ assemblies *«■» "5* e- *"" starting with assemblies 6, 
;    ? 
f e, — assemblies 7, and e« — assemblies 8. 

It should be noted here that the length t of any 

! unconditional test T (and also of the base of the test) 

is not less than 7 when n J? 2, i.e, t ^ 7. 

To prove this statement we must establish that 

allowance for the feedbacks cannot reduce the test for 

the n-th block. 

Since in the case of an open circuit no feedbacks 

are produced, if they do not exist in the original net- 

work, assemblies 2, 3, 5, 6, 7, and 8 must enter into any  | 

test (see Table 26). It is obvious that the closing of   | 

Lthe first contact can be detected only when an ■ bn * 1 j. 

i 

i<rx- 



(see diagram« Figo lß)i  here the feedback is produced when 

there is no carry from, the preceding 

block, i„e* c. •, si 0* However» under these conditions 

Closing i« the 2-$t block is caught directly by the 

1. at the outtJU- « n 
presenee 01 a 

Thus*   anv test must contain the assembly 

(0 1 X X)j i*e«j assembly *+„ This proves the s tat eine nt 

IV, Coinpii at I on of Information Tables . As a 

result of running through the assembly en we obtain s, 

!n 4 i)-column assembly,  Let us -write out tho result of 

running through assemblies e, , e0, * *»? e„  under the 

assumption that there is a given fault in the i-th 

bloch (i )> 2) and in the X-st. block.  In Tables 

27 ™" 29 ve shall show only those results which differ 

from the correct values» 

/ 5 $'~ 
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The plain numbers and the primed- numbers in 

Tables 27 - 29 denote closing and opening,  respectively, 

of a contact designated by this number?, 0 denotes, as 

always, the network in working order« Certain columns are 

split\  depending on whether the number i is even (e) or 

odd Co). When I. a n the columns in Tables 27 and 28, 

corresponding to the indices 3» *+> lö? xl* an<a 12» need 

not be considered* After these erplanations, let us 

write out the values of the following parameters which 

enter into Sables 27 ~ 29s 

a=ii ... IK  »=H ... K>, 

ji = 00 .... 00, o=10 ... 01. 

The remaining parameters are given in Table 30. 

A survey of Tables 27 -- 29 shows that ue have 39 

different types of information» We shall, not write out 

; a table of information in explicit form, and shall con- 

fine ourselves only to an indication;at -the end of each 

column, of the information with vihlch a. given fault is 

connected« 

As a result of running through the base vie obtain 

quite definite information, which contains not only the 

type of information, but also as a rule the value of the 

index 1 for the parameters fy ±, %  :1j i ±i  ^ i» V^ v i* 

and > . Let us write now a list of faults, connected 
i' 
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with given information. We shall distinguish here two 

cases• 

a) The information determines uniquely faults, 

the indistinguishability of which is established. 

I /—presence of a short/circuit in the 5-th contact of the 

i«th block, i.e. 5^ 

where i — even, 

» Ü n     »     »i « 5-th contact of the T 
x   n 

h?~ 

I16~ 

i mm mm X18 

i-th block, i.e. ^ 

where i — odd, 

" an open circuit in the 2nd contact of the 

i-th block, i.e. 2* 

where i — even, 

i» «  i»     "   "  " 2nd contact of the 

i-th block, i.e. 2' 

where i — odd 

ii  if  »     »   ,f  " l+-th or 12-th con- 

tact of the i-th 

block, i.e., ^{ 

T it     H t!  i!     H   »»  H  5-th contact of 
x19 

the i-th block, 

i.e. 5.', where 
i 

i — even 

jsy. 



X21 

■L„— presence of an open circuit in the 5~th contact, 
20 

i.e, 5J> where 

i — odd 

n it  M-   «    »' «  6-th contact, 

i.e.? 6|» 

T H ti    it      it »» »    "      9-th contact, 
23~~ 

i.e.,  9£, «here 

i ~ even, 

- it ii    «      » «» »    "      9th contact, 

i.e., 9£, «here 

i — odd 

M «    t»      13-th contact, 

i.e., 13 jS 

ti    M      ii H "    M      l*+-th contact, 

"2U-. 

x25 

*2.6~    " 

i29 

»     ii        t» 

i.e. 1^, where 

i — even 

_ ,i n    II      II »i «»    »      l^-th contact, 
27 

i.e. Ik«, «here 
i 

i — odd 

_ ,, II    ti      ti » i»    «»      15-th contact, 
I28"" 

i.e. 15J, «here 

»    »i      » 

i — even 

»*    »      15-th contact, 

i.e. 15J, where 

1 — odd 

4 

I 
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3~0—presence of shortcircuit in the 1-st contact of the 

1-st block, i.e. 1. 

T      »i '  H  M    n »  '» 2~nd or 6-th contact 
31 

of the 1-st block, 

i.e. 2X V 61 

is    it  ?!.    «    «  " 3-rd or 8-th contact 

of the 1-st block, 

i.e. 3X V 81 

it    H  si    «    «  *» 5-th contact of the 

1-st block, i.e. 5^ 

T      _      » »      own    n n      "    1-st and  5-th contacts 
3^- 

of the 1-st block, 

i.e. Ij   V   5[ 

r ts ii      »I « «      »    2-nd contact of the 
x35~" 

I — 
33 

X36"" 

I — 
37 

1-st block, i.e. 2» 

n    »  II    »    «  " 3-rd or 7-th contacts 

of the 1-st block, 

i.e. 3X V 7[ 

H    ii  ti    II    "  " k-th or 8-th contacts 

of the 1-st block, 

i.e. ^ V 8^ 

u    it  it    » "  " 6-th contact of the 

1-st block, i.e. 6£ 

b) The information determines directly several 

faults, vhich are either distinguishable, or those 

I — 
38 



for which the distinguishability has not been established 

for certain values of i. 

I — denotes that either the network is in working 

order, or there is a short circuit in the M-th or 12-th 

contacts of an unknown block or in the *f-th or 7-th 

contact of the 1-st block, or else the presence of an 

open circuit in the 10-th contact of an unknown block, 

i.e.,0V h\l     12 \/ \V   71V 10«; 

I denotes the presence of a short circuit in the     J 

1-st contact of the i-th block, or in the 7-th contact 

of the (i - l)-th block, i.e., 1. V     7i-1, where I is 

even (2 ^ i  < n * 1); 

I denotes the presence of a short circuit in the 

1-st contact of the i-th block or in the 7-th contact 

of the (i - l)-th block, i.e., 1. \/ 7.^, where i is 

odd (2 -^ i <v n *  1); 

I denotes a presence of a short circuit in the 

2-nd contact of the i-th block or in the 8-th contact       | 

of the (i ♦ l)-th block, i.e., 2i V 8
i+1> 

vhere * is 

even (1 ^ i ^ n); 

L denotes the presence of a short circuit in the 

2-nd contact of the i-th block or in the 8-th contact 

of the (i 4 l)-th block, i.e., 2±   V  8^, where i 

is odd (1 "$: i ^ n); 

I denotes the presence of a short circuit in the 
5 

— /^— 



? 3-rd or 11-th contact of an unknown block, I.e» 3 V/ H 

If. denotes the presence of a short circuit in the 
o 

6-th contact of an unknown 'block, i*e*? 6; 

I„ — denotes the uresence of a short circuit in 
9 

the 9-th contact of an unknown block, i»eM 9? 

lir, — denotes the presence of an open circuit in 

the 10-th contact of an unknown block, i.e.» 10; 

I . --• denotes the presence of a short circuit in 

the 13-th or 15-th contacts of an unknown block, i.e, 

13 V 15} 

L,,. — denotes the presence of a short circuit in 

the iWfch or 16-th contacts of the 1-th block, i.e., 

Ik.   V 16.5 where i is even? 

I  ~~ denotes the presence of short circuit in 
13 

the 1^-th or 16-th contacts of the i-th block, i.e., 

Ik.   V 16.. where i is odd; 
IX' 

I., — denotes the presence of an open circuit in 

the 1-st or 7»th contacts of an unknown block, i.e., 

lf V 7?| 
I  — denotes the presence of an. open circuit in 

the 3-rd' or 11-th contacts of the i-th block, i.e., 

3J V nJi i     i .  , 
I — denotes the presence of an open, circuit in 

the 8-th contact of an unknown block, i.e., S1. 

/«- 
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Note. In I1, I2, I3, and 1^ the faults 7^  l^v 

8  , and 2, are fictitious and should, be discarded. 
"nil'     1 

The foregoing list shows that in the case of 

appearance of information indicated in item "a" the 

fault is established and the monitoring is completed. 

However, in the appearance of information indicated in 

item "b" additional analysis is necessary. Since this 

analysis uses essentially the effect of the backward 

wave, we shall proceed to consider the backward wave. 

V. Effect of the Backward Wave. We have already 

taken into account in certain auxiliary arguments, 

considerations that take into account the effect of 

feedback. Now, on the basis of an account of the 

effect of the backward wave, we shall, on the one hand, 

establish the indistinguishability of certain faults, 

and on the other hand we shall show for certain cases 

how faults can be detected. A 

1) Proof that fj3 = f*5 and f^ = f^  (i ? 2). 

It follows from the table of fault functions that it is 

impossible to distinguish t^  from f^ and f^ from f^. 

if only the effect of the forward wave is taken into 

account. It remains for us to show that this is also 

impossible if the action of the backward wave is 

considered. In fact, for any assembly e, both in the 



case of closing of the contact 13 and in. the case of the 

closing of the contact 15  (or respectively the closing 

of contacts Ik  and 16), either the outputs of the 

(i - l)-th block are simultaneously closed, and then in 

both cases the same backward wave is produced, or else 

they are simultaneously open and there Is no backward 

wave at all, i.e., f^(e) s f,,-(e) (or respectively 

its  (e) = f*(e)). This proves the statement. It 
JLH-        16 

follows therefore that upon appearan.ce of information 

T,, or L,-, the analysis of the fault is complete» 
12     AO 

2) Proof of Distinguishability of f£ from fQ 
i 2' 

and f* when i >  2 (when i s 2 we have f^ s fQ, see 

p* 3*+7 /of source/3* We agree furthermore to place in 

the assembly (£ '" £ ^ £|) a « * " or " - » sign 

above the corresponding column, if we wish to note 

whether carry $eek-p£ft6e-£ft from the preceding columns 

took place or not. 

Obviously, to detect a short circuit in the U-th 

contact of the i-th block by means of the backward wave 

it is necessary that the verifying assembly contain 

?  in the i-th column (the ♦ guarantees that "c   s 0) 

Furthermore, to observe the appearance of a backward 

wave on the pole c\ ., , it is necessary that the (i - D- 

-th column of this assembly be t     , for then when the 

lf-th contact of the i-th block is closed we have 

}t£ 



s   r 1 (normally, s. _ =0). Thus, the verifying 
i-1 1-1 

assembly should have, in the simplest case, the form 

fl" ooi '"I, Let us ascertain now the result that 
\... Oil ... / 
should be produced here by a carry in the (i - 2)~th 

column. If 1 - 2 > 1, then the (i - 2)-th block contains 

the 12-th contact. 

Obviously, in the absence of carry in the (i - 2)-th 

column and upon closing of the 12-th contact of the 

(i - 2)-th block, we shall have T^ = l.and therefore       | 

s   =0. Thus, in the absence of carry in the (i-2)-th 

column (i > 3) *e shall have fj == f*~2. Consequent-      i 

ly, to avoid this identification, it is necessary that 

vhen i > 3 the investigated assembly have the form 

f  ... O  o o . •• \       it is seen therefore, that a fault 

in the i+-th contact of the i J£ 3 block (unknown) is 

determined "with the aid of four assemblies, for example". 

7...00 1 1 00 1 1\   /.- 00 i 1 0 0 1\  /...00 1 1 00\   /...0 0 1 1 0\ 
\...oi i i oi i i)' V..-01 i i oi lj» \...oiiioir V... o l i i o; 

The remaining faults 0, h    \/  7-^ l±,  2.^ 3^ 

61> 7i' 8i' V 10i' X1i' 12i' 13i V l5i' Xi' 3^ ^ 
8». 10', and 11' can be established in principle by 
i'  i7     i 

taking into account only the forward wave. However, 

we shall see later that by using the effect of the 

backward wave we can construct a more compact condition- 

al test. 

( 



YI. Construction of the TestsTT . In the case 
^i 

of appearance of information I. or I , the index i and 
1     <L 

the faults \\    \J   7,  n are determined» To distinguish 
1   »     1-4. 

them, we take the test 

where 
/O... 0 i* 0...0\* 

e*     \0 ... 0 1   o... oj   * 

Obviously, on running through the assembly e , 

we have the following: 

in the case l±      — 0 ... 0 1 1* 0 ... 0 

in the case 7. n -- 0 ... 0 1 0* 0 ... 0 

* The asterisk denotes here the i-th column. 

In the cgse of appearance of information I„ or 'I , 

ve also determine the index i and the faults 2 \/ 8 

To distinguish them, we take the test 

2\ = {V» SU  J\ ={*.). 
•where 

 /0... 0 1 0* ...0\ 

Here, upon running through the assembly e^, we 

h av e the following: 

- i<n 



in the case 2   — 0 ... 0 1 0 0* ... 0 

in the case 8, _ — 0 ... 0 i 1 0* ... 0 

We note that v>hen i s  n the information I (I, ) 
J 

yields 2 and no further analysis is necessary. J ' n 
Let us consider the case of appearance of 

information Ip, IQ, and I * Vie put 

■where 
e 

In the case of appearance of "1" in the i-th 

column upon running through the assembly e^Q, i.e., 

if 0 ... 0 1* 0 ... 0 appears, v/e have respectively 

6a, 9i, and 13i V tf±* 

In the case of appearance of the information I1Q, 

as seen from the table of fault functions of the i-th 

block, v/e must put 

T •    ic     p   ' 
*■    lyo  IIP    12" 

where 
/. .0 1 o 1\      /...I o I th 

'■'"•'■""'"I... i i i !/' en~~\... mi) 

Upon running through assemblies  f *'' . ( ( \"  }      and 

/ . . . 0 i *■ Q . ., \  vhen the 10„th contact of the i-th 
v • * I \    \ i 
block is closed, v/e have respectively ...1011* 10... 

/6V 



and ... 1 0 1* 1 1 0 ... instead of ... 1 0 1 0* 1 0 ... 

and ... 1 0 1* 0 10 ..., i.e., a "1" appears in the 

i-th and (i - l)-th columns (when i = 2, the "1" appears 

only in the first assembly, since the backward wqve from 

the second block is not caught)* It is seen therefore 

that the number of the faulty block is established0 . 

From the table of the fault functions of 

the i-th block it is also seen that upon appearance of 

information 1,^ it is necessary to take the test 

In fact, the presence of a fault l! \/ lx  is character- 

ized by the fact that in running through the assembly 

|",oi
1f' ""^ one obtains instead of ... 0 1 0* 1 ... 

the result ,„0 0 0*1,,, (the "1" of the (I 4 l)-th 

column disappears). 

In the case of appearance of information I  , 

one must take the test 

vhere 

/. ..00 0* 0 . . . 0\ p     —— 
v.. o i o o... o/ 

In the case of a fault 3«, instead of 
i 

...  0 1 0*  0  ...  there appears   ... 0 0 0* 0  ...   (the 

"1" disappears  from the   (i 4 l)-th column). 

}L>C1 



Analogously, in the case of appearance of 

.Information I„rt the test T_  Is determined for the 
22 I22 

establishment of the number of the block in which the 

\contact 8 is open circuited. Namely 

where 

Here, when the 8-th contact of the i-th block is open 

circuited, upon running throggh tha assembly 
/»,.. I I* I . .. x 
V.,,1 o I ... )   instead of ... 1 0* 1 ... one obtains 

... 0 0* 1 ... (the "l" disappears in the (i * l)-th 

column). 

The informations I and I- lead to more compllcat- 
0    5 

ed explanations and constructions. 

Thus, assume that we have the information IQ* 

This means that the network can be in one of the states 

0 \/ it V 12-V ^ V   7  V 10'. As already 

noted, in step V, the verifying assembly for disclosing 

a short circuit in the Wth contact of the i-th block 

(i > 2) should contain the following values, 

in the i-th, (i - l)-th, and (i - 2)-th columns. In 

this case upon closing of the W-th contact of the i-th 

block, running through the verifying assembly, we 

no 



obtain ... 1* 1 1 ..., i.e., there appears a "1" in the 

( i - l)-th column. On the other hand, the presence of 

a carry in the (i - 2)-th column prevents the possibility 

of the appearance of a "1" in the (i - l)-th column, 

because of    a short circuit in the 12-th contact of 

the (i - 2)-th block. Thus5 the "1" appearing in the 

(i ~ l)-th column as a result of running, through the 

verifying test of the indicated type is evidence of the 

presence' of a short circuit in the V-th contact of the 

i-th block* 

To detect a short circuit in 12-th contact of the 

1-th block it is necessary that the verifying assembly 

• (see table of fault functions and the diagram of the 
/ . . . O   l*   -   '   • \ 

i-th block) have the form ^ '/t \   | |  , .,  / «  As a 

result of running through'this assembly vie' obtain in 

the case of a short circuit of the 12-th contact of 

the i-th block ... 1 0* ..., i.e., a "1" appears in the 

( i ■» l)-th column. 
However, the "l" can appear in the (i + l)-th 

column because of the backward wave due 

to a fault in the i+-th contact of the (i * 2)-th 

block, i.e., if the assembly has the form ^ ö , , ^J. 

To block the path of the backward wave in the (i *  l)-th 

block, it is enough to take the assembly ^v r % { { {    . . . A 

(7i 



It is easy to see that now the "1" will appear in the 

(i 4 l)~th column upon running through the assembly only 

if there is a short circuit in the 12-th contact of the 

i-ih block. Finally, to observe an open circuit in the 

10-th contact of the i-th block it is necessary to take 

the assembly ( ' ' ' °4   ?, ' ' ' ]  (see table of fault 

functions and the diagram of the i-th block). It is 

easy to verify that if upon running through this assembly 

we obtain ... 0 a* ♦.., i.e., if the "1" has disappeared 

from the (i * l)~th column, then the 10-th contact of 

the i-th block has become open circuited. 

Let us show that in the case of appearance of 

information I , the completion of the monitoring calls 

for taking the test 

^ h  "^ \^16» ^17' ^1S> ^19' ^20' fJlll 

where 

?«, = ( 

1 0 1 0 0 0 10 1 
1 i 

1 0 0 0 1 0 i\ 

)• 

1 0 0\ 
i 1 oj' 

1 0 1 ü 0 1\ 
11110 1/' 

0 0 1\ 
0 1 lj' 

)• 

.010 0 0101 0 

.1110 11111 

. 1 0 0 0 10 1  0 0 

.110 111 

. 0 0 0 1  0 1 0 0 1 

.10 1 

. 0 0 10 10 0 0 1 

.011111 

i 

i 

0 1 0 i 0 0 0 1  1 
111110M1 

nx 



The foregoing assemblies are based on the 
/ o o o   i o \   ~\     T repetition of the combination ^,   } ^ ( ( I .   J-n 

•* 
assemblies e., ,~ and eo we took for the l«st column "f 

and not  .  , to ensure transfer to the next column. 
isi n If  upon running through the assembly e., g a 

aupears in the 1-st column, we obviously have k    \J  7n« 

If the network is in proper working order, running 

through any of the foregoing assemblies leads to an. 

assembly in which pieces 0 0, 0 1, ana 1 1 alternate 

(from right to left), where 0 0 is followed by 0 1, 

0 1 is followed byl 1, 1 1 by 0 0, etc«, excluding the 

1-st colum for the assemblies e19, e p? e  ? e?n, and 

e  . For example, in running through e„, we would 
21 iO 
obtain 

...o o i i o i oo. 

The preceding arguments show that if upon running through 

a set from T 

the piece 0* 0 goes into 1* 1, then the if-th 

contact of the (i ♦ l)-th block is short circuited, 

the piece 0* 0 goes into 1* 0, then the 12-th 

contact of the (i # l)-th block is short circuited, 

the piece 1* 1 goies into 0* 1, then the 10-th 

contact of the (i - l)-th block is open circuited. 

An exception is the assembly e20? for when we 

m 



run through it, if in the first two columns we have 1 0 

instead of 0 0, we have a short circuit in the l*-th 

contact of the 3-rcl block. 

Finally, if information. lt. aooears, >/■"" have 2   \/ '!. 

As seen from the table of fault functions and the digram 

of the i-th block, to determine the number of the faulty 

block (3. V 11.) and to detect a short circuit in. the 

v„rd contact of the i-th block (i <£ 2), one must take 

the assemblies »& 

However j 

(:::T I:::)» (:::?!*:::)•      .   . < 

unless certain precautions are taken, 

then in the case of the first assembly the result öf 

aborting of the 3-rd or 11-th contacts of the s-th 

blocb (s ^ i - 2) r:ay influence the i-th column. 

Prefer«?, the first assembly must have the following 

form when written m greater aetaxl. \.^oo    I . . ./• 

The value °  in the (i «■ l)-tb column has as its 
o 

purpose to block the propagation of the wave arising 

ir] the i-th block.  It must be indicated here that 

running through this assembly may lead to a value 

... 1 1* 1 ... instead of ... 1 0* 1 ... not only because 

cf a fault in the i-th block, but also because of a 

short of the 11-th contact of the (i ♦ l)-th block. 

Ucon running through the second assembly we can obtain 

171 



... 1 0* ... instead of ... 0 0* ... not only because of 

a closing of the 3-rd contact of the i-th block, but 

also because of the influence of the backward wave, 

produced, for exemple, upon closing of the__3-rd or 11-th 

contact in the (i * 2)-th block, if the assembly has the 

formf ' ' ' lv ? ? ' "). To prevent the action of the backward 

wave on the (i 4 l)-th block we refine in this assembly 

the (i * 2)-th column in the following manneri 

( • " ' i  ° r ' * * )   We can now give the construction 
v .. • I I I  - • - / * 
of the test TTr. We put 

*4 = {%» <%§, £g,|t %5? Cae)» 

where 

r"&- 

■C: 

■C: 
<:: 

■t: 

0 1 S 0 ! 0 1 i 0 i\ 
0 0 1110 0 111/' 

1 1 0 1 0 1 1 0 1 0\' 
0 i 1 1 0 0 1 1 1 0/ * 

1 0 1 0 1 1 0 i 0 1\ 
1 1 1 0 0 1 1 i 0 0/' 

0 1 0 1 1 0 1 0 i 1\ 
i i o o i i i o o t)» 

1 0 i 1 0 i 0 1 1 i 
.1 o o i i i oo i i 

These assemblies are based on the repetition of 

the combinations (? i \ ° ! ^ .   In the last assembly 

to insure carry in the second column, we used } 

instead of  1  as the first column. When the network 
o 

is in proper operating condition, upon running through 

the foregoing assemblies, the result is an alternation^ 

f7> 



from left to right, of the combinations 0 0 and 1 0 1, 

perhaps with the exception of the first three columns. 

Thus,upon running through the asrembly er^ ve have, in 

the case of a properly »erking network, ... OJ) 1^ 0 1 

.0 0-1 0 0. From the foregoing considerations we con- 

'elude that if the piece 1 0* 1, and also the piece 1* 0 1 

have become 1 1* 1 and 1* 1 1 respectively, we have a 

short circuit in the 11-th contact of the.i-th block, 

but if the piece 0 0* has become 1 0*, we 

have a short circuit in the 3-rd contact of the i-th 

block. 

Note. In running through the assembly e^ the 

piece 10 0 plays the same role as the piece 1 0 li 

if it becomes 1 1 0, it means either a short circuit 

of the 11-th contact of the 3-td block, or a short 

circuit 32 V 
n2 in the 2"nä block* 

This completes the construction of the condition- 

al test. 

The investigation shows also that all the faults, 

with the exception of those listed in step II, are 

pairwise distinguishable. We thus arrive at the 

following result. 

Theorem. To detect a single fault in a one-step 

binary summator network (see beginning of the section) 

.one can construct a conditional test of length < 13. 

- /?£ — 
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Attention should be called here to the  fact  that 

the  length of  the  conditional test is  independent of ru 

<■•»„,,  c^f .<-v,^ v'U:^  h-c^esr/in? n,  and  therefore with 

increasing nunber of    fault  functions,  the test does not 

become  longer is due to the increase  in  the number of 

network outputs,  and consequently, v»ith the  increased 

/r-rvint  of information obtained at  the  outputs  upon 

running through the  assemblies» 
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